Differentiation

Timur Musin

University of Freiburg

October 10, 2014

Literature

- A. C. Chiang and K. Wainwright, Fundamental methods of mathematical economics, Irwin/McGraw-Hill, Boston, MA, 2005.
- P. Hammond and K. Sydster, Essential mathematics for economic analysis, Financial Times Prentice Hall, Harlow, Munich, 2006.
- D. Stefanica, A primer for the mathematics of financial engineering, Financial Engineering Press, New York, NY, 2008.

Online Resources

- http://ocw.mit.edu/courses/audio-video-courses/ #mathematics (Single Variable Calculus, Multivariable Calculus, Differential Equations, Linear Algebra)
- http://ocw.mit.edu/courses/audio-video-courses/ #electrical-engineering-and-computer-science (Probabilistic Systems Analysis and Applied Probability)
- https://www.coursera.org/ (plenty of courses on different subjects)

- Annuity: a financial product which you buy and that regularly pays you a fixed amount of money over a period of time
- Suppose, that you're offered to buy an annuity that pays \$100 at the end of each year for the next 10 years. At an interest rate of 4%, how much are you willing to pay?
- To calculate the present value of the annuity, use the following formula: $V(n, r, A) = \frac{A}{r} * \left[1 \frac{1}{(1+r)^n}\right]$, where A the received amount, r the interest rate and n number of periods over which the annual payments are received.
- In our example A = 100, r = 0.05, n = 10. Therefore, V(10, 0.05, 100) = 772.1735.

What happens to V(n) if we increase n?

•
$$V(n, 0.05, 100) = \frac{100}{0.05} * \left[1 - \frac{1}{(1+0.05)^n}\right]$$

Graphically:

• What happens to V(n) if we increase n? $\Leftrightarrow \lim_{n \to \infty} V(n) = \lim_{n \to \infty} \left(\frac{100}{0.05} * \left[1 - \frac{1}{(1 + 0.05)^n} \right] \right) = ?$

•
$$\lim_{n \to \infty} V(n) = \lim_{n \to \infty} \left(\frac{A}{r} * \left[1 - \frac{1}{(1+r)^n} \right] \right) = \frac{A}{r}$$

•
$$\lim_{n \to \infty} V(n) = \frac{100}{0.05} = 2000$$

• Graphically:

•
$$\lim_{n\to\infty} V(n) = \frac{A}{r}$$
 is an "easy limit".

1

What about:

•
$$\lim_{x \to \infty} \frac{1}{\sqrt{x^2 - 4x + 1} - x} = ?$$

•
$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x - 2} = ?$$

•
$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = ?$$

•
$$\lim_{x \to \infty} \frac{\ln(x)}{x} = ?$$

Rules of how to deal with limits are to be introduced.

Notation

- $\mathbb N$ the set of natural numbers $(0,1,2,3,\ldots)$
- $\mathbb Z$ the set of integers $(0,\pm 1,\pm 2,\pm 3,\ldots)$
- $\mathbb R$ the set of real numbers (any point of the real line)
- \mathbb{R}_{++} the set of positive real numbers
- \in in: indicator of set membership
- \forall for all
- ∃ there exists
- ullet ightarrow goes to
- $g:\mathbb{R} \to \mathbb{R}$ a real-valued function with a real-valued argument
- / not, e.g. $x = \sqrt{3}, x \notin \mathbb{Z}$
- $k! = k \cdot (k-1) \cdot (k-2) \cdot \ldots 2 \cdot 1$

- $g: \mathbb{R} \to \mathbb{R}$
- g real-valued function with a real-valued argument

Black box; rule

$$x \in \mathbb{R} \rightarrow g(x) \in \mathbb{R}$$

 \checkmark Conveyor belt

- g takes a real number as an argument and produces a real number as an output
- Notice that g : ℝ → ℝ doesn't mean that any real value can be obtained as an output (e.g. g(x) = x²)

- The limit of g(x) as x → x₀ exists and is finite and equals to l if and only if for any ε > 0 there exists δ > 0 such that |g(x) l| < ε for all x ∈ (x₀ δ, x₀ + δ).
- Read as\Elaborately: The limit of g(x) as x → x₀ (as argument x approaches a fixed value x₀) exists (notice that ∞ and (-∞) are also included into "exists") and is finite and equals to *I* if and only if for any ε > 0 (very small positive number ε) there exists δ > 0 such that |g(x) I| < ε (we can make g(x) very close to the limiting value *I*) for all x ∈ (x₀ δ, x₀ + δ) (for every x in the interval).

- Mathematically: $\lim_{x \to x_0} g(x) = I$ iff $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $|g(x) - I| < \varepsilon, \forall |x - x_0| < \delta.$
- Graphically:

- $\lim_{x \to x_0} g(x) = \infty \text{ iff } \forall C > 0, \exists \delta > 0 \text{ s.t. } g(x) > C, \\ \forall |x x_0| < \delta.$
- $\lim_{x \to x_0} g(x) = -\infty$ iff $\forall C < 0, \exists \delta > 0$ s.t. g(x) < C, $\forall |x x_0| < \delta$.
- $\lim_{x\to\infty} g(x) = I$ iff $\forall \varepsilon > 0, \exists b \text{ s.t. } |g(x) I| < \varepsilon, \forall x > b.$

Basic Definitions: Horizontal Asymptotes

What happens to f(x) = x²-3/x²+4 as the argument x goes to infinity?

$$\Leftrightarrow \lim_{x\to\infty} f(x) = \lim_{x\to\infty} \frac{x^2-3}{x^2+4} = ?$$

- **Definition:** the line y = L is called a **horizontal asymptote** if $\lim_{x \to \infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$ (notice that the L's in the definitions are not necessarily the same)
- Graphically:

Example:

•
$$f(x) = \begin{cases} x+1, & x>0 \\ -x+2, & x<0 \end{cases}$$

•
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = 1$$

•
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-x+2) = 2$$

Evaluating Limits

Suppose $c \in \mathbb{R}$ (i.e. c is a real-valued constant) and the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist (i.e. need not to be finite but can't be of the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$) then

•
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

•
$$\lim_{x\to a} c \cdot f(x) = c \cdot \lim_{x\to a} f(x)$$

•
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

•
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

Evaluating Limits

Let c > 0 be a positive constant then

- $\lim_{x\to\infty} c^{\frac{1}{x}} = 1$
- $\lim_{x \to \infty} x^{\frac{1}{x}} = 1$

Let $k \in \mathbb{N} \setminus \{0\}$ and if c > 0 is a positive constant then

•
$$\lim_{k\to\infty} c^{\frac{1}{k}} = 1$$

•
$$\lim_{k\to\infty}\frac{c^k}{k!}=0$$

Evaluating Limits: L'Hôpital's Rule

- Evaluate the following expression: $\lim_{x\to 0} \frac{\sin(x)}{x}$
- Remember the rules for evaluating limits. If we use the rule for the quotient of two functions, we will obtain the following expression: $\lim_{x \to 0} \frac{\sin(x)}{x} = \frac{\lim_{x \to 0} \sin(x)}{\lim_{x \to 0} 0} = \frac{0}{0}$
- Division by zero is not allowed. The function is, however, defined over the entire real line except for the point x = 0.
- Graphically:

⇒ Use L'Hôpital's Rule!

Evaluating Limits: L'Hôpital's Rule

- Let x₀ be a real number (or ±∞) and let f(x) and g(x) be differentiable functions.
- Rule: Suppose $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ or $\pm \infty$. If $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists and there is an interval (a, b) containing x_0 such that $g(x) \neq 0$ for all $x \in (a, b) \setminus x_0$, then $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ exists and $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Evaluating Limits: L'Hôpital's Rule

Examples:

•
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\frac{d}{dx}\sin(x)}{\frac{d}{dx}x} = \lim_{x \to 0} \cos(x) = 1$$

•
$$\lim_{x \to \infty} \frac{\ln(x)}{x} = \lim_{x \to \infty} \frac{\frac{d}{dx}\ln(x)}{\frac{d}{dx}x} = \lim_{x \to \infty} \frac{1}{x} = 0$$

•
$$\lim_{x \to 0} \frac{e^{e \cdot x} - 1}{e \cdot x} = \lim_{x \to 0} \frac{\frac{d}{dx}(e^{e \cdot x} - 1)}{\frac{d}{dx}(e \cdot x)} = \lim_{x \to 0} \frac{e \cdot e^{e \cdot x}}{e} = 1$$

•
$$\lim_{x \to \infty} \frac{x^3 - 2}{x^2 + 3} = \lim_{x \to \infty} \frac{\frac{d}{dx}(x^3 - 2)}{\frac{d}{dx}(x^2 + 3)} = \lim_{x \to \infty} \frac{3x^2}{2x} =$$

$$\lim_{x \to \infty} \frac{\frac{d}{dx}(3x^2)}{\frac{d}{dx}(2x)} = \lim_{x \to \infty} \frac{6x}{2} = \infty$$

Types of Limits

I asy Limits:

e.g.
$$\lim_{x \to 4} \frac{x+3}{x^2+1} = \frac{4+3}{4^2+1} = \frac{7}{17}$$

2 "Harder" Limits:

e.g. $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ results into the uncertainty of the $\frac{0}{0}$ -type. Some further "manipulations" are needed.

Types of Limits

Example:

•
$$\lim_{x \to \infty} \frac{1}{\sqrt{x^2 - 4x + 1} - x} =$$
$$\lim_{x \to \infty} \frac{1}{\sqrt{x^2 - 4x + 1} - x} * \frac{\sqrt{x^2 - 4x + 1} + x}{\sqrt{x^2 - 4x + 1} + x} =$$
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 4x + 1} - x^2}{x^2 - 4x + 1 - x^2} = \lim_{x \to \infty} \frac{\sqrt{x^2 - 4x + 1} + x}{1 - 4x} * \frac{\frac{1}{x}}{\frac{1}{x}} =$$
$$\lim_{x \to \infty} \frac{\sqrt{1 - \frac{4}{x} - \frac{1}{x^2}} + 1}{\frac{1}{x} - 4} = \frac{2}{-4} = -\frac{1}{2}$$

Continuity

- **Definition:** a function f(x) is continuous at x_0 if $\lim_{x \to x_0} f(x) = f(x_0)$.
- The definition of continuity implies that:
 - $\lim_{x \to x_0} f(x) \text{ exists (i.e. } \lim_{x \to x_0^-} f(x) \text{ and } \lim_{x \to x_0^+} f(x) \text{ both exist and} \\ \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)) \\ \text{2 } f(x_0) \text{ is defined} \\ \text{3 } \lim_{x \to x_0} f(x) = f(x_0) \\ \end{array}$
- Definition: a function f(x) is right-continuous at x₀ if
 lim f(x) = f(x₀).
- Definition: a function f(x) is left-continuous at x₀ if
 lim_{x→x₀} f(x) = f(x₀).

Continuity

- Definition: a function f(x) is continuous on an interval (a, b) if it is continuous at every x ∈ (a, b).
- Example: left-continuous function $f(x) = \lceil x \rceil$.

Continuity

 Example: function g(x) = arctan(x) is continuous throughout the entire real line ℝ.

• **Intuitively:** a function is continuous if it can be drawn without taking the arm away from the paper.

Continuity Theorems

- Let f and g be continuous functions at x_0 and let $c \in \mathbb{R}$, then:
 - (1) f + g(2) f - g(3) $c \cdot f$ (4) $f \cdot g$ (5) $\frac{f}{g}$ (if $g(x_0) \neq 0$)

are also continuous functions at x_0 .

 If g is continuous at x₀ and f is continuous at g(x₀) then f ∘ g(x) = f (g(x)) is also continuous at x₀.

Continuity and Frequently Used Functions.

- The following functions are continuous on their domains:
 - Polynomials $(\mathbb{D} = \mathbb{R} = (-\infty, \infty))$
 - Roots functions $(\mathbb{D} = \mathbb{R}_+ = [0,\infty))$
 - Logarithmic functions $(\mathbb{D} = \mathbb{R}_{++} = (0,\infty))$
 - Exponential functions $(\mathbb{D} = \mathbb{R} = (-\infty, \infty))$

• Example. Where is the function $f(x) = \frac{ln(x)}{x^2-1}$ continuous?

- The numerator: g(x) = ln(x) is continuous on $\mathbb{D} = \mathbb{R}_{++} = (0, \infty).$
- **2** The denominator: $h(x) = x^2 1$ is continuous on $\mathbb{D} = \mathbb{R} = (-\infty, \infty)$.
- The entire function f(x) is a quotient of two other functions. We should, therefore, exclude the values of x that turn the denominator of the function into 0

$$(x^2 - 1 = (x - 1) \cdot (x + 1) = 0$$
 if $x = \pm 1$).

Taking the intersection of the determined intervals and excluding the points x = ±1, we conclude that f(x) is continuous on (0,1) ∪ (1,∞).

Examples of Discontinuities

Some functions are, however, discontinuous. **Examples of discontinuities:**

• Example 1 (Jump Discontinuities): $\lim_{x \to x_0^-} f(x)$ and

 $\lim_{x \to x_0^+} f(x) \text{ both exist but } \lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$ (see slide 15).

• Example 2: $\lim_{x \to x_0^-} f(x)$ and $\lim_{x \to x_0^+} f(x)$ both exist and $\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x)$ but $f(x_0)$ is not defined. Example: function $f(x) = \frac{1 - \cos(x)}{x}$ is not defined at $x_0 = 0$.

Examples of Discontinuities

• Example 3 (Infinite Discontinuities): As an example consider the function $f(x) = \frac{1}{x}$. Graphically:

The $\lim_{x\to 0^-} f(x) = -\infty$ but $\lim_{x\to 0^+} f(x) = +\infty$.

Examples of Discontinuities

Example 4: Consider the function f(x) = sin(¹/_x) as x → 0.
 Graphically:

Neither left, not right limit exists!

٠

Continuity: Theorem (Differentiability \Rightarrow Continuity)

Theorem (Differentiability ⇒ Continuity): if f(x) is differentiable at x₀ then f(x) is continuous at x₀.
 Proof:

We can rewrite the definition of continuity as
$$\lim_{x \to x_0} f(x) - f(x_0) \stackrel{?}{=} 0.$$
 This is what we need to show.
$$\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0) =$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0) = f'(x_0) \cdot 0 = 0 \quad \blacksquare$$

 Notice that the converse statement is not true, i.e. Differentiability & Continuity.

Continuity: Theorem (Differentiability \Rightarrow Continuity)

Example: the function f(x) = |x| is continuous on D = R but is not differentiable at x₀ = 0.
 Graphically:

Differentiation

The goal of this lecture is to provide theoretical knowledge to answer the following two questions:

- What is a derivative?
 - geometrical interpretation
 - physical interpretation
- 2 How to differentiate any function you know?

$$\frac{d}{dx}\left(e^{\frac{\ln(x)}{\arctan(x)}}\right) = ?$$

Derivatives. Geometrical Interpretation.

• Suppose that we need to find an equation for the tangent line y = l(x) to the function y = f(x) at some point $P(x_0, y_0)$. Graphically:

- Definition: a line y = l(x) is tangent to the curve f(x) at a point P(x₀, y₀) if ∃ δ > 0 s.t.:
 - f(x) > l(x) on $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ or
 - f(x) < l(x) on $(x_0 \delta, x_0) \cup (x_0, x_0 + \delta)$ and
 - $f(x_0) = l(x_0)$.

Derivatives. Geometrical Interpretation.

• **Definition:** a secant line of a curve is a line that intersects two points on the curve. **Graphically:**

 Tangent line = limit of the secant lines PQ as Q → P (given that P stays fixed).

Derivatives. Geometrical Interpretation.

- The slope of the curve f(x) equals to the slope of the line I(x) at the point x_0 .
- Back to the original task: determining the equation for the tangent line.

A line I(x) passing through $P(x_0, y_0)$ is determined by the following expression:

$$y-y_0=m*(x-x_0)$$

Thus, to determine the equation for the tangent line we need:

point P(x₀, y₀ = f(x₀)) and
 slope m = f'(x₀) (the only calculus part).

- **Definition:** the derivative of f(x) at x_0 , denoted by $f'(x_0)$, is the slope of the tangent line to y = f(x) at $P(x_0, y_0)$.
- Finding the slope of the tangent line:

• Summing things up:

the slope of the tangent line at $P(x_0, y_0)$ is given by:

 $f'(x_0) = m = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$

- Definition: a function f : ℝ → ℝ is differentiable at a point x₀ ∈ ℝ if lim_{Δx→0} Δf/Δx exists (notice that the limit needs not to be finite).
- Definition: a function f(x) is differentiable at an open interval (a, b) if it is differentiable at every point x ∈ (a, b).

Example: using the definition introduced above derive the derivative of the function $f(x) = \frac{1}{x}$ at x_0 .

O Construct the difference quotient $\frac{\Delta f}{\Delta x}$ first:

$$\frac{\Delta f}{\Delta x} = \frac{\frac{1}{x_0 + \Delta x} - \frac{1}{x_0}}{\Delta x} = \frac{1}{\Delta x} \cdot \left(\frac{x_0 - (x_0 + \Delta x)}{(x_0 + \Delta x) \cdot x_0} \right) = \frac{1}{\Delta x} \cdot \left(\frac{-\Delta x}{(x_0 + \Delta x) \cdot x_0} \right) = \frac{1}{(x_0 + \Delta x) \cdot x_0}.$$

2 Consider what happens as Δx approaches 0:

$$\frac{\Delta f}{\Delta x} = \frac{1}{(x_0 + \Delta x) \cdot x_0} \xrightarrow{\Delta x \to 0} -\frac{1}{x_0^2}.$$
$$f'(x_0) = -\frac{1}{x_0^2}$$

Graphically:

• Function
$$f(x) = \frac{1}{x}$$
:

• Derivative
$$f'(x) = -\frac{1}{x^2}$$
:

- A quick check-up of the consistency of the obtained results:
 - The expression f'(x) = -¹/_{x²} is always negative which corresponds to negative slopes of the tangent lines to f(x) = ¹/_x at any point of the domain.
 - 2 As x goes to infinity the slope of the tangent lines becomes less and less steep which corresponds to $\lim_{x \to \infty} f'(x) = 0$.
- Remark on notation:

notice that $\lim_{x\to 0^+} \frac{1}{x} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x} = -\infty$. Thus, writing that $\lim_{x\to 0} f(x) = \infty$ is not sloppy but simply wrong! However, $\lim_{x\to 0^+} -\frac{1}{x^2} = -\infty$ and $\lim_{x\to 0^-} -\frac{1}{x^2} = -\infty$. In this case saying that $\lim_{x\to 0} -\frac{1}{x^2} = -\infty$ is correct.

Derivatives. More Notation.

- If u = u(x) is an *n*-time differentiable function of x then:
 - u'(x) = du/dx = Dx is also a function of x and is referred to as the first derivative of u(x).
 - $(u'(x))' = u''(x) = \frac{d}{dx}\frac{du}{dx} = \frac{d^2}{dx^2}u = D^2u$ is also a function of x and is referred to as the second derivative of u(x).

•
$$(u^{(n-1)}(x))' = u^{(n)}(x) = \frac{d}{dx} \frac{d^{n-1}u}{dx^{n-1}} = \frac{d^n}{dx^n} u = D^n u$$
 is also a function of x and is referred to as the n^{th} derivative of $u(x)$.

Derivatives.

Example: using the definition introduced above derive the derivative of the function $f(x) = x^n$ for $n \in \mathbb{N}$.

• Construct the difference quotient $\frac{\Delta f}{\Delta x}$ first:

$$\frac{\Delta f}{\Delta x} = \frac{(x + \Delta x)^n - x^n}{\Delta x} = \frac{1}{\Delta x} \cdot (x^n + nx^{n-1}\Delta x + \mathbb{O}\left((\Delta x)^2\right) - x^n) = \frac{1}{\Delta x} \cdot (nx^{n-1}\Delta x + \mathbb{O}\left((\Delta x)^2\right)) = nx^{n-1} + \mathbb{O}(\Delta x).$$

2 Consider what happens as Δx approaches 0:

$$\frac{\Delta f}{\Delta x} = nx^{n-1} + \mathbb{O}(\Delta x) \xrightarrow{\Delta x \to 0} nx^{n-1}$$

$$f'(x) = \frac{d}{dx}x^n = nx^{n-1}, n \in \mathbb{N}$$

Derivatives. Physical Interpretation.

• Consider the following graph:

• $\frac{\Delta y}{\Delta x}$ - relative or average rate of change $\frac{\Delta y}{\Delta x} \xrightarrow{\Delta x \to 0} \frac{dy}{dx}$ - instanteneous rate of change

Derivatives. Physical Interpretation.

Example (Pumpkin Drop):

- Suppose you're participating in a contest dedicated to the Halloween Celebration. The goal of the contest is to throw a pumpkin from the top of KG II as precisely on the mark on the nearby lawn as possible.
- Assuming that the equation $h(t) = 80 5t^2$ describes the coordinate of the vertical position of the pumpkin, calculate:
 - the average velocity of the pumpkin assuming it was falling for t = 4 seconds;
 - 2 the instanteneous velocity of the pumpkin at t = 4.

Derivatives. Physical Interpretation.

Solution:

- The average velocity of the pumpkin throughout the time interval (t₀, t₁) is given by Δh/Δt = h₁-h₀/t₁-t₀ = 0-80/4-0 = -20 m/s.
- The instanteneous velocity of the pumpkin at t = 4 is given by $\frac{d}{dt}h = \frac{d}{dt}(80 - 5t^2) = 0 - 10t$. At t = 4 the instanteneous velocity equals to $\frac{d}{dt}h|_{t=4} = (0 - 10t)|_{t=4} = -40$ m/s.

Derivatives: Frequently Used Rules. Product Rule.

The Product Rule allows to take derivatives of the product of functions for which derivatives exist.

E.g.
$$\frac{d}{dx}(x^n sin(x)) = ?$$

Product Rule: suppose u(x) and v(x) are differentiable functions, then (uv)' = u'v + uv'.

Derivation of the rule:

• Consider the change in the functional value first: $\Delta(uv) = u(x + \Delta x) \cdot v(x + \Delta x) - u(x) \cdot v(x) =$ $(u(x + \Delta x) - u(x)) \cdot v(x + \Delta x) + u(x) \cdot v(x + \Delta x) - u(x) \cdot v(x) =$ $(u(x + \Delta x) - u(x)) \cdot v(x + \Delta x) + u(x) \cdot (v(x + \Delta x) - v(x)) =$ $\Delta u \cdot v(x + \Delta x) + u(x) \cdot \Delta v.$

Derivatives: Frequently Used Rules. Product Rule.

 Construct the difference quotient and consider what happens if x → 0:

$$\frac{\Delta(uv)}{\Delta x} = \frac{\Delta u \cdot v(x + \Delta x) + u(x) \cdot \Delta v}{\Delta x} =$$

$$\frac{\Delta u}{\Delta x} \cdot v(x + \Delta x) + u(x) \cdot \frac{\Delta v}{\Delta x} \xrightarrow{\Delta x \to 0} \frac{du}{dx} v(x) + u(x) \frac{dv}{dx}.$$

$$\frac{d}{dx}(uv) = \frac{du}{dx}v(x) + u(x)\frac{dv}{dx}$$

Derivatives: Frequently Used Rules. Quotient Rule.

The Quotient Rule allows to take derivatives of the quotient of two functions for which derivatives exist.

E.g.
$$\frac{d}{dx}\left(\frac{1}{x^n}\right) = ?$$

Quotient Rule: suppose u(x) and v(x) are differentiable

functions, then $\left| \left(\frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \right|$.

Derivation of the rule:

• Consider the change in the functional value first:

$$\Delta\left(\frac{u}{v}\right) = \frac{u + \Delta u}{v + \Delta v} - \frac{u}{v} = \frac{uv + (\Delta u)v - uv - (\Delta v)u}{(v + \Delta v)v} = \frac{v \cdot \Delta u - u \cdot \Delta v}{(v + \Delta v) \cdot v}$$

Derivatives: Frequently Used Rules. Quotient Rule.

 Construct the difference quotient and consider what happens if x → 0:

$$\frac{\Delta\left(\frac{u}{v}\right)}{\Delta x} = \frac{\frac{\Delta u}{\Delta x}v - u\frac{\Delta v}{\Delta x}}{(v + \Delta v)v} \xrightarrow{\Delta x \to 0} \frac{\frac{du}{dx}v - \frac{dv}{dx}u}{v \cdot v}.$$
$$\blacksquare$$
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{\frac{du}{dx}v - \frac{dv}{dx}u}{v \cdot v}$$

Derivatives: Frequently Used Rules. Chain Rule.

The Chain Rule allows to take derivatives of composite functions.

Chain Rule: if f(x) and g(x) are differentiable functions then the composite function $(g \circ f)(x) = g(f(x))$ is also differentiable and

$$((g \circ f)(x))' = (g(f(x)))' = g'(f(x)) \cdot f'(x)$$

Example:

$$\frac{d}{dt} (sin(t))^{10} = \underbrace{10(sin(t))^9}_{\text{derivative of the outer function}} \cdot \underbrace{cos(t)}_{\text{derivative of the inner function}}$$

Derivatives: Chain Rule and Substitution Method.

Substitution Method (Leibniz's Notation):

Suppose f(x) and g(x) are differentiable functions. Consider a composite function g(f(x)) and let u = f(x), then g(f(x)) = g(u)

and
$$\frac{d}{dx}g(u) = \frac{dg(u)}{du} \cdot \frac{du(u)}{dx}$$

Example: consider the function $g(x) = sin(x^2)$. Find $\frac{d}{dx}sin(x^2)$ using the substitution method. Solution:

- Let $f(x) = x^2 = u$, then $g(f(x)) = sin(x^2) = g(u)$.
- We can then find the derivative using the substitution method:

$$\frac{d}{dx}g(u) = \frac{d}{dx}\sin(u) = \frac{d\sin(u)}{du} \cdot \frac{du}{dx} = \cos(u) \cdot 2x = \cos(x^2) \cdot 2x .$$

Implicit Differentiation

- Consider the function $y = x^{\frac{m}{n}}$ with $m, n \in \mathbb{N} \setminus \{0\}$. Our goal is to find $\frac{d}{dx}x^{\frac{m}{n}}$.
- The approach will be to treat y as an **implicit** function of x. Therefore, $y = x^{\frac{m}{n}} \Rightarrow y^n = x^m$. $\frac{d}{dx}y^n = \frac{d}{dx}x^m \Rightarrow (\frac{d}{dy}y^n) \cdot \frac{dy}{dx} = mx^{m-1}$

chain rule

$$\Rightarrow ny^{n-1}\frac{dy}{dx} = mx^{m-1}$$

$$\Rightarrow \boxed{\frac{d}{dx}x^{\frac{m}{n}} = \frac{m}{n} \cdot x^{\frac{m}{n}-1}}$$

Implicit Differentiation

Example: y is defined by $y^4 + xy^2 - 2 = 0$ as an implicit function of x. Find the expression for $\frac{dy}{dx}$.

• Explicit Solution:

$$y^2 = \frac{-x \pm \sqrt{x^2 + 8}}{2}$$

$$\Rightarrow y = \pm \sqrt{\frac{-x \pm \sqrt{x^2 + 8}}{2}}$$

Taking the derivative of this expression is very unpleasant.

• Implicit Solution: leave the expression as it is and differentiate the both sides. $\frac{d}{dv}(y^4 + xy^2 - 2 = 0)$

$$4y^{3}y' + y^{2} + 2xyy' = 0$$

$$(4y^3 + 2xy)y' = -y^2 \Rightarrow y' = \frac{-y^2}{4y^3 + 2xy}$$