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Limit of a Function Differentiation
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(plenty of courses on different subjects)

4 / 54

http://ocw.mit.edu/courses/audio-video-courses/#mathematics
http://ocw.mit.edu/courses/audio-video-courses/#mathematics
http://ocw.mit.edu/courses/audio-video-courses/#electrical-engineering-and-computer-science
http://ocw.mit.edu/courses/audio-video-courses/#electrical-engineering-and-computer-science
https://www.coursera.org/


Limit of a Function Differentiation

Motivating Example

• Annuity: a financial product which you buy and that regularly
pays you a fixed amount of money over a period of time

• Suppose, that you’re offered to buy an annuity that pays $100
at the end of each year for the next 10 years. At an interest
rate of 4%, how much are you willing to pay?

• To calculate the present value of the annuity, use the

following formula: V (n, r ,A) = A
r ∗
[
1− 1

(1+r)n

]
,

where A - the received amount, r - the interest rate and n -
number of periods over which the annual payments are
received.

• In our example A = 100, r = 0.05, n = 10. Therefore,
V (10, 0.05, 100) = 772.1735.

What happens to V (n) if we increase n?
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Limit of a Function Differentiation

Motivating Example

• V (n, 0.05, 100) = 100
0.05 ∗

[
1− 1

(1+0.05)n

]
Graphically:
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V(n), A=100, r=0.05

• What happens to V (n) if we increase n?

⇔ lim
n→∞

V (n) = lim
n→∞

(
100

0.05
∗
[

1− 1

(1 + 0.05)n

])
= ?
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Limit of a Function Differentiation

Motivating Example

• lim
n→∞

V (n) = lim
n→∞

(
A

r
∗
[

1− 1

(1 + r)n

])
=

A

r

• lim
n→∞

V (n) =
100

0.05
= 2000

• Graphically:
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Limit of a Function Differentiation

Motivating Example

• lim
n→∞

V (n) =
A

r
is an ”easy limit”.

What about:

• lim
x→∞

1√
x2 − 4x + 1− x

= ?

• lim
x→2

x2 + 3x − 10

x − 2
= ?

• lim
x→0

e2x − 1

x
=?

• lim
x→∞

ln(x)

x
= ?

Rules of how to deal with limits are to be introduced.
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Limit of a Function Differentiation

Notation

• N - the set of natural numbers (0, 1, 2, 3, . . .)

• Z - the set of integers (0,±1,±2,±3, . . .)

• R - the set of real numbers (any point of the real line)

• R++ - the set of positive real numbers

• ∈ - in: indicator of set membership

• ∀ - for all

• ∃ - there exists

• → - goes to

• g : R→ R - a real-valued function with a real-valued
argument

• / - not, e.g. x =
√

3, x /∈ Z
• k! = k · (k − 1) · (k − 2) · . . . 2 · 1
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Limit of a Function Differentiation

Basic Definitions

• g : R→ R
• g - real-valued function with a real-valued argument

• g takes a real number as an argument and produces a real
number as an output

• Notice that g : R→ R doesn’t mean that any real value can
be obtained as an output (e.g. g(x) = x2)
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Limit of a Function Differentiation

Basic Definitions

• The limit of g(x) as x → x0 exists and is finite and equals
to l if and only if for any ε > 0 there exists δ > 0 such that
|g(x)− l | < ε for all x ∈ (x0 − δ, x0 + δ).

• Read as\Elaborately: The limit of g(x) as x → x0 (as
argument x approaches a fixed value x0) exists (notice that
∞ and (−∞) are also included into ”exists”) and is finite
and equals to l if and only if for any ε > 0 (very small
positive number ε) there exists δ > 0 such that |g(x)− l | < ε
(we can make g(x) very close to the limiting value l) for all
x ∈ (x0 − δ, x0 + δ) (for every x in the interval).
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Limit of a Function Differentiation

Basic Definitions

• Mathematically: lim
x→x0

g(x) = l iff ∀ ε > 0, ∃ δ > 0 s.t.

|g(x)− l | < ε, ∀ |x − x0| < δ.

• Graphically:
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Limit of a Function Differentiation

Basic Definitions

• lim
x→x0

g(x) =∞ iff ∀ C > 0, ∃ δ > 0 s.t. g(x) > C ,

∀|x − x0| < δ.

• lim
x→x0

g(x) = −∞ iff ∀ C < 0, ∃ δ > 0 s.t. g(x) < C ,

∀|x − x0| < δ.

• lim
x→∞

g(x) = l iff ∀ ε > 0, ∃ b s.t. |g(x)− l | < ε, ∀ x > b.
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Limit of a Function Differentiation

Basic Definitions: Horizontal Asymptotes

• What happens to f (x) = x2−3
x2+4

as the argument x goes to
infinity?

⇔ lim
x→∞

f (x) = lim
x→∞

x2 − 3

x2 + 4
= ?

• Definition: the line y = L is called a horizontal asymptote
if lim

x→∞
f (x) = L or lim

x→−∞
f (x) = L (notice that the L’s in the

definitions are not necessarily the same)
• Graphically:
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Horizontal Asymptote y=1
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Limit of a Function Differentiation

Basic Definitions

• lim
x→x+

0

- right-hand limit (i.e. x → x0 and x > x0)

• lim
x→x−0

- left-hand limit (i.e. x → x0 and x < x0)

• Example:

• f (x) =

{
x + 1, x > 0

−x + 2, x < 0

• lim
x→0+

f (x) = lim
x→0+

(x + 1) = 1

• lim
x→0−

f (x) = lim
x→0−

(−x + 2) = 2
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Limit of a Function Differentiation

Evaluating Limits

Suppose c ∈ R (i.e. c is a real-valued constant) and the limits
lim
x→a

f (x) and lim
x→a

g(x) exist (i.e. need not to be finite but can’t be

of the form 0/0 or ∞/∞) then

• lim
x→a

[f (x) + g(x)] = lim
x→a

f (x) + lim
x→a

g(x)

• lim
x→a

c · f (x) = c · lim
x→a

f (x)

• lim
x→a

[f (x) · g(x)] = lim
x→a

f (x) · lim
x→a

g(x)

• lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0

• lim
x→a

n
√
f (x) = n

√
lim
x→a

f (x)
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Limit of a Function Differentiation

Evaluating Limits

Let c > 0 be a positive constant then

• lim
x→∞

c
1
x = 1

• lim
x→∞

x
1
x = 1

Let k ∈ N \ {0} and if c > 0 is a positive constant then

• lim
k→∞

c
1
k = 1

• lim
k→∞

ck

k!
= 0
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Limit of a Function Differentiation

Evaluating Limits: L’Hôpital’s Rule

• Evaluate the following expression: lim
x→0

sin(x)

x
.

• Remember the rules for evaluating limits.
If we use the rule for the quotient of two functions, we will

obtain the following expression: lim
x→0

sin(x)

x
=

lim
x→0

sin(x)

lim
x→0

0
=

0

0

• Division by zero is not allowed. The function is, however,
defined over the entire real line except for the point x = 0.

• Graphically:

−10 −5 0 5 10

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

x

• ⇒ Use L’Hôpital’s Rule! 18 / 54



Limit of a Function Differentiation

Evaluating Limits: L’Hôpital’s Rule

• Let x0 be a real number (or ±∞) and let f (x) and g(x) be
differentiable functions.

• Rule: Suppose lim
x→x0

f (x) = lim
x→x0

g(x) = 0 or ±∞. If

lim
x→x0

f ′(x)

g ′(x)
exists and there is an interval (a, b) containing x0

such that g(x) 6= 0 for all x ∈ (a, b) \ x0, then lim
x→x0

f (x)

g(x)

exists and lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g ′(x)
.
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Limit of a Function Differentiation

Evaluating Limits: L’Hôpital’s Rule

Examples:

• lim
x→0

sin(x)

x
= lim

x→0

d
dx sin(x)

d
dx x

= lim
x→0

cos(x) = 1

• lim
x→∞

ln(x)

x
= lim

x→∞

d
dx ln(x)

d
dx x

= lim
x→∞

1

x
= 0

• lim
x→0

ee·x − 1

e · x
= lim

x→0

d
dx (ee·x − 1)

d
dx (e · x)

= lim
x→0

e · ee·x

e
= 1

• lim
x→∞

x3 − 2

x2 + 3
= lim

x→∞

d
dx

(
x3 − 2

)
d
dx (x2 + 3)

= lim
x→∞

3x2

2x
=

lim
x→∞

d
dx

(
3x2
)

d
dx (2x)

= lim
x→∞

6x

2
=∞
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Limit of a Function Differentiation

Types of Limits

1 ”Easy” Limits:

e.g. lim
x→4

x + 3

x2 + 1
=

4 + 3

42 + 1
=

7

17

2 ”Harder” Limits:

e.g. lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
results into the uncertainty of

the 0
0 -type.

Some further ”manipulations” are needed.
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Limit of a Function Differentiation

Types of Limits

Example:

• lim
x→∞

1√
x2 − 4x + 1− x

=

lim
x→∞

1√
x2 − 4x + 1− x

∗
√
x2 − 4x + 1 + x√
x2 − 4x + 1 + x

=

lim
x→∞

√
x2 − 4x + 1 + x

x2 − 4x + 1− x2
= lim

x→∞

√
x2 − 4x + 1 + x

1− 4x
∗

1
x
1
x

=

lim
x→∞

√
1− 4

x −
1
x2 + 1

1
x − 4

=
2

−4
= −1

2
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Limit of a Function Differentiation

Continuity

• Definition: a function f (x) is continuous at x0 if
lim
x→x0

f (x) = f (x0).

• The definition of continuity implies that:
1 lim

x→x0

f (x) exists (i.e. lim
x→x−

0

f (x) and lim
x→x+

0

f (x) both exist and

lim
x→x−

0

f (x) = lim
x→x+

0

f (x))

2 f (x0) is defined
3 lim

x→x0

f (x) = f (x0)

• Definition: a function f (x) is right-continuous at x0 if
lim

x→x+
0

f (x) = f (x0).

• Definition: a function f (x) is left-continuous at x0 if
lim

x→x−0

f (x) = f (x0).
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Limit of a Function Differentiation

Continuity

• Definition: a function f (x) is continuous on an interval (a, b)
if it is continuous at every x ∈ (a, b).

• Example: left-continuous function f (x) = dxe.

−2 −1 0 1 2

−
2

−
1

0
1

2

x

f(x) = ceiling(x)
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Limit of a Function Differentiation

Continuity

• Example: function g(x) = arctan(x) is continuous throughout
the entire real line R.

−10 −5 0 5 10

−
2

−
1

0
1

2

x

g(x) = arctan(x)

• Intuitively: a function is continuous if it can be drawn
without taking the arm away from the paper.
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Limit of a Function Differentiation

Continuity Theorems

• Let f and g be continuous functions at x0 and let c ∈ R,
then:

1 f + g
2 f − g
3 c · f
4 f · g
5 f

g (if g(x0) 6= 0)

are also continuous functions at x0.

• If g is continuous at x0 and f is continuous at g(x0) then
f ◦ g(x) = f (g(x)) is also continuous at x0.
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Limit of a Function Differentiation

Continuity and Frequently Used Functions.

• The following functions are continuous on their domains:
• Polynomials (D = R = (−∞,∞))
• Roots functions (D = R+ = [0,∞))
• Logarithmic functions (D = R++ = (0,∞))
• Exponential functions (D = R = (−∞,∞))

• Example. Where is the function f (x) = ln(x)
x2−1

continuous?

1 The numerator: g(x) = ln(x) is continuous on
D = R++ = (0,∞).

2 The denominator: h(x) = x2 − 1 is continuous on
D = R = (−∞,∞).

3 The entire function f (x) is a quotient of two other functions.
We should, therefore, exclude the values of x that turn the
denominator of the function into 0
(x2 − 1 = (x − 1) · (x + 1) = 0 if x = ±1).

4 Taking the intersection of the determined intervals and
excluding the points x = ±1, we conclude that f (x) is
continuous on (0, 1) ∪ (1,∞).
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Limit of a Function Differentiation

Examples of Discontinuities

Some functions are, however, discontinuous.
Examples of discontinuities:
• Example 1 (Jump Discontinuities): lim

x→x−0

f (x) and

lim
x→x+

0

f (x) both exist but lim
x→x−0

f (x) 6= lim
x→x+

0

f (x)

(see slide 15).
• Example 2: lim

x→x−0

f (x) and lim
x→x+

0

f (x) both exist and

lim
x→x−0

f (x) = lim
x→x+

0

f (x) but f (x0) is not defined.

Example: function f (x) = 1−cos(x)
x is not defined at x0 = 0.

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x
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Limit of a Function Differentiation

Examples of Discontinuities

• Example 3 (Infinite Discontinuities):
As an example consider the function f (x) = 1

x .
Graphically:

−5 0 5

−
5

0
5

x

f(x) = 1/x

The lim
x→0−

f (x) = −∞ but lim
x→0+

f (x) = +∞.
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Limit of a Function Differentiation

Examples of Discontinuities

• Example 4: Consider the function f (x) = sin( 1
x ) as x → 0.

Graphically:

−0.15 −0.05 0.00 0.05 0.10 0.15

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(x) = sin(1/x)

Neither left, not right limit exists!
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Limit of a Function Differentiation

Continuity: Theorem (Differentiability ⇒ Continuity)

.

• Theorem (Differentiability ⇒ Continuity): if f (x) is
differentiable at x0 then f (x) is continuous at x0.
Proof:

1 We can rewrite the definition of continuity as

lim
x→x0

f (x)− f (x0)
?
= 0. This is what we need to show.

2 lim
x→x0

f (x)− f (x0) = lim
x→x0

f (x)− f (x0)

x − x0
· (x − x0) =

lim
x→x0

f (x)− f (x0)

x − x0
· lim
x→x0

(x − x0) = f ′(x0) · 0 = 0 �

• Notice that the converse statement is not true, i.e.
Differentiability : Continuity.
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Limit of a Function Differentiation

Continuity: Theorem (Differentiability ⇒ Continuity)

.
• Example: the function f (x) = |x | is continuous on D = R but

is not differentiable at x0 = 0.
Graphically:

−4 −2 0 2 4

−
1

0
1

2
3

4
5

x

f(x) = |x|
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Limit of a Function Differentiation

Differentiation

The goal of this lecture is to provide theoretical knowledge to
answer the following two questions:

1 What is a derivative?
• geometrical interpretation
• physical interpretation

2 How to differentiate any function you know?

d
dx

(
e

ln(x)
arctan(x)

)
= ?
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

• Suppose that we need to find an equation for the tangent line
y = l(x) to the function y = f (x) at some point P(x0, y0).
Graphically:

−4 −2 0 2 4

−
4

−
2

0
2

4

x

f(x) = 1/x

f(x)

f(x)

R(−1,−1)

P(1,1)

l_1(x)

l_2(x)

• Definition: a line y = l(x) is tangent to the curve f (x) at a
point P(x0, y0) if ∃ δ > 0 s.t.:

• f (x) > l(x) on (x0 − δ, x0) ∪ (x0, x0 + δ) or
• f (x) < l(x) on (x0 − δ, x0) ∪ (x0, x0 + δ) and
• f (x0) = l(x0).
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

• Definition: a secant line of a curve is a line that intersects
two points on the curve.
Graphically:

−2 −1 0 1 2 3 4

0
2

4
6

8

x

Secant and Tangent Lines

f(x)

secant line

tangent line

Q

P

• Tangent line = limit of the secant lines PQ as Q → P (given
that P stays fixed).
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

• The slope of the curve f (x) equals to the slope of the line
l(x) at the point x0.

• Back to the original task: determining the equation for the
tangent line.
A line l(x) passing through P(x0, y0) is determined by the
following expression:

y − y0 = m ∗ (x − x0)

.
Thus, to determine the equation for the tangent line we need:

1 point P(x0, y0 = f (x0)) and
2 slope m = f ′(x0) (the only calculus part).
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

• Definition: the derivative of f (x) at x0, denoted by f ′(x0), is
the slope of the tangent line to y = f (x) at P(x0, y0).

• Finding the slope of the tangent line:

−1 0 1 2 3 4 5 6

−
1

0
1

2
3

4
5

delta (f)

delta (x)
P( x0,f(x0) )

Q( x0+delta(x), f( x0+delta(x) )

secant line

•
∆f

∆x︸︷︷︸
slope of the secant line

∆x→0−→ m = lim
∆x→0

∆f

∆x︸ ︷︷ ︸
slope of the tangent line
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

• Summing things up:
the slope of the tangent line at P(x0, y0) is given by:

f ′(x0) = m = lim
∆x→0

∆f

∆x

• Definition: a function f : R −→ R is differentiable at a point

x0 ∈ R if lim
∆x→0

∆f

∆x
exists (notice that the limit needs not to

be finite).

• Definition: a function f (x) is differentiable at an open
interval (a, b) if it is differentiable at every point x ∈ (a, b).
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

Example: using the definition introduced above derive the
derivative of the function f (x) = 1

x at x0.

1 Construct the difference quotient ∆f
∆x first:

∆f
∆x =

1
x0+∆x

− 1
x0

∆x = 1
∆x ·

(
x0−(x0+∆x)
(x0+∆x)·x0

)
=

1
∆x ·

(
−∆x

(x0+∆x)·x0

)
= 1

(x0+∆x)·x0
.

2 Consider what happens as ∆x approaches 0:

∆f
∆x = 1

(x0+∆x)·x0

∆x→0−→ − 1
x2

0
.

f ′(x0) = − 1

x2
0

39 / 54



Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

Graphically:
• Function f (x) = 1

x :

−4 −2 0 2 4

−
4

−
2

0
2

4

x

f(x) = 1/x

f(x)

f(x)

R(−1,−1)

P(1,1)

l_1(x)

l_2(x)

• Derivative f ′(x) = − 1
x2 :

−4 −2 0 2 4

1
0

−
1

−
2

−
3

−
4

−
5

x

f '(x) = − 1/x^2
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Limit of a Function Differentiation

Derivatives. Geometrical Interpretation.

• A quick check-up of the consistency of the obtained results:
1 The expression f ′(x) = − 1

x2 is always negative which
corresponds to negative slopes of the tangent lines to f (x) = 1

x
at any point of the domain.

2 As x goes to infinity the slope of the tangent lines becomes
less and less steep which corresponds to lim

x→∞
f ′(x) = 0.

• Remark on notation:

notice that lim
x→0+

1

x
=∞ and lim

x→0−

1

x
= −∞. Thus, writing

that lim
x→0

f (x) =∞ is not sloppy but simply wrong!

However, lim
x→0+

− 1

x2
= −∞ and lim

x→0−
− 1

x2
= −∞. In this

case saying that lim
x→0
− 1

x2
= −∞ is correct.
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Limit of a Function Differentiation

Derivatives. More Notation.

• y = f (x),∆y = ∆f ;

f ′︸︷︷︸
Newton’s notation

=
df

dx
=

dy

dx
=

d

dx
f︸ ︷︷ ︸

Leibniz’s notation

.

• Higher Derivatives:
If u = u(x) is an n-time differentiable function of x then:

• u′(x) = du
dx = Dx is also a function of x and is referred to as

the first derivative of u(x).

• (u′(x))
′

= u′′(x) = d
dx

du
dx = d2

dx2 u = D2u is also a function of x
and is referred to as the second derivative of u(x).
...

•
(
u(n−1)(x)

)′
= u(n)(x) = d

dx
dn−1u
dxn−1 = dn

dxn u = Dnu is also a
function of x and is referred to as the nth derivative of u(x).
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Limit of a Function Differentiation

Derivatives.

Example: using the definition introduced above derive the
derivative of the function f (x) = xn for n ∈ N.

1 Construct the difference quotient ∆f
∆x first:

∆f
∆x = (x+∆x)n−xn

∆x = 1
∆x · (x

n + nxn−1∆x +O
(
(∆x)2

)
− xn) =

1
∆x · (nx

n−1∆x + O
(
(∆x)2

)
) = nxn−1 + O(∆x).

2 Consider what happens as ∆x approaches 0:

∆f
∆x = nxn−1 + O(∆x)

∆x→0−→ nxn−1.

f ′(x) =
d

dx
xn = nxn−1, n ∈ N
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Limit of a Function Differentiation

Derivatives. Physical Interpretation.

• Consider the following graph:

0 1 2 3 4 5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0

x

delta x

delta y

y = f(x)

• ∆y
∆x - relative or average rate of change

∆y
∆x

∆x→0−→ dy
dx - instanteneous rate of change
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Limit of a Function Differentiation

Derivatives. Physical Interpretation.

Example (Pumpkin Drop):

• Suppose you’re participating in a contest dedicated to the
Halloween Celebration. The goal of the contest is to throw a
pumpkin from the top of KG II as precisely on the mark on
the nearby lawn as possible.

• Assuming that the equation h(t) = 80− 5t2 describes the
coordinate of the vertical position of the pumpkin, calculate:

1 the average velocity of the pumpkin assuming it was falling for
t = 4 seconds;

2 the instanteneous velocity of the pumpkin at t = 4.
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Limit of a Function Differentiation

Derivatives. Physical Interpretation.

Solution:

• The average velocity of the pumpkin throughout the time
interval (t0, t1) is given by ∆h

∆t = h1−h0
t1−t0

= 0−80
4−0 = −20 m/s.

• The instanteneous velocity of the pumpkin at t = 4 is given
by d

dt h = d
dt (80− 5t2) = 0− 10t. At t = 4 the instanteneous

velocity equals to d
dt h
∣∣
t=4

= (0− 10t)|t=4 = −40 m/s.
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Limit of a Function Differentiation

Derivatives: Frequently Used Rules. Product Rule.

The Product Rule allows to take derivatives of the product of
functions for which derivatives exist.

E.g. d
dx (xnsin(x)) = ?

Product Rule: suppose u(x) and v(x) are differentiable functions,

then (uv)′ = u′v + uv ′ .

Derivation of the rule:

• Consider the change in the functional value first:
∆(uv) = u(x + ∆x) · v(x + ∆x)− u(x) · v(x) =

(u(x + ∆x)− u(x))·v(x+∆x)+u(x)·v(x+∆x)−u(x)·v(x) =

(u(x + ∆x)− u(x))·v(x+∆x)+u(x)·(v(x + ∆x)− v(x)) =

∆u · v(x + ∆x) + u(x) ·∆v .
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Limit of a Function Differentiation

Derivatives: Frequently Used Rules. Product Rule.

• Construct the difference quotient and consider what happens
if x → 0:

∆(uv)
∆x = ∆u·v(x+∆x)+u(x)·∆v

∆x =

∆u
∆x · v(x + ∆x) + u(x) · ∆v

∆x
∆x→0−→ du

dx v(x) + u(x)dvdx . �

d

dx
(uv) =

du

dx
v(x) + u(x)

dv

dx
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Limit of a Function Differentiation

Derivatives: Frequently Used Rules. Quotient Rule.

The Quotient Rule allows to take derivatives of the quotient of two
functions for which derivatives exist.

E.g. d
dx

(
1
xn

)
= ?

Quotient Rule: suppose u(x) and v(x) are differentiable

functions, then
(u
v

)′
=

u′v − uv ′

v2
.

Derivation of the rule:

• Consider the change in the functional value first:

∆
(
u
v

)
= u+∆u

v+∆v −
u
v = uv+(∆u)v−uv−(∆v)u

(v+∆v)v = v ·∆u−u·∆v
(v+∆v)·v .
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Limit of a Function Differentiation

Derivatives: Frequently Used Rules. Quotient Rule.

• Construct the difference quotient and consider what happens
if x → 0:

∆( u
v )

∆x =
∆u
∆x

v−u ∆v
∆x

(v+∆v)v

∆x→0−→
du
dx

v− dv
dx

u

v ·v . �

d

dx
(
u

v
) =

du
dx v −

dv
dx u

v · v
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Limit of a Function Differentiation

Derivatives: Frequently Used Rules. Chain Rule.

The Chain Rule allows to take derivatives of composite functions.

Chain Rule: if f (x) and g(x) are differentiable functions then the
composite function (g ◦ f )(x) = g(f (x)) is also differentiable and

((g ◦ f )(x))′ = (g(f (x))′ = g ′(f (x)) · f ′(x) .

Example:

d
dt (sin(t))10 = 10(sin(t))9︸ ︷︷ ︸

derivative of the outer function

· cos(t)︸ ︷︷ ︸
derivative of the inner function

.
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Limit of a Function Differentiation

Derivatives: Chain Rule and Substitution Method.

Substitution Method (Leibniz’s Notation):
Suppose f (x) and g(x) are differentiable functions. Consider a
composite function g(f (x)) and let u = f (x), then g(f (x)) = g(u)

and
d

dx
g(u) =

dg(u)

du
· du(u)

dx
.

Example: consider the function g(x) = sin(x2) . Find d
dx sin(x2)

using the substitution method.
Solution:

• Let f (x) = x2 = u, then g(f (x)) = sin(x2) = g(u) .

• We can then find the derivative using the substitution method:

d
dx g(u) = d

dx sin(u) = dsin(u)
du · dudx = cos(u) · 2x = cos(x2) · 2x .
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Limit of a Function Differentiation

Implicit Differentiation

• Consider the function y = x
m
n with m, n ∈ N \ {0}. Our goal

is to find d
dx x

m
n .

• The approach will be to treat y as an implicit function of x .
Therefore, y = x

m
n ⇒ yn = xm.

d

dx
yn︸ ︷︷ ︸

chain rule

= d
dx x

m ⇒
(

d
dy y

n
)
· dydx = mxm−1

⇒ nyn−1 dy
dx = mxm−1

⇒ d

dx
x

m
n =

m

n
· x

m
n
−1
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Limit of a Function Differentiation

Implicit Differentiation

Example: y is defined by y4 + xy2 − 2 = 0 as an implicit function
of x . Find the expression for dy

dx .

• Explicit Solution:

y2 = −x±
√
x2+8

2

⇒ y = ±
√
−x±

√
x2+8

2
Taking the derivative of this expression is very unpleasant.

• Implicit Solution: leave the expression as it is and
differentiate the both sides.
d
dx (y4 + xy2 − 2 = 0)

4y3y ′ + y2 + 2xyy ′ = 0

(4y3 + 2xy)y ′ = −y2 ⇒ y ′ = −y2

4y3+2xy
.
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