Differentiation

Timur Musin

University of Freiburg

October 10, 2014
(1) Limit of a Function
(2) Differentiation

Literature

R A. C. Chiang and K. Wainwright, Fundamental methods of mathematical economics, Irwin/McGraw-Hill, Boston, MA, 2005.
P. Hammond and K. Sydster, Essential mathematics for economic analysis, Financial Times Prentice Hall, Harlow, Munich, 2006.
(R. Stefanica, A primer for the mathematics of financial engineering, Financial Engineering Press, New York, NY, 2008.

Online Resources

- http://ocw.mit.edu/courses/audio-video-courses/ \#mathematics
(Single Variable Calculus, Multivariable Calculus, Differential Equations, Linear Algebra)
- http://ocw.mit.edu/courses/audio-video-courses/ \#electrical-engineering-and-computer-science (Probabilistic Systems Analysis and Applied Probability)
- https://www.coursera.org/ (plenty of courses on different subjects)

Motivating Example

- Annuity: a financial product which you buy and that regularly pays you a fixed amount of money over a period of time
- Suppose, that you're offered to buy an annuity that pays $\$ 100$ at the end of each year for the next 10 years. At an interest rate of 4%, how much are you willing to pay?
- To calculate the present value of the annuity, use the following formula: $V(n, r, A)=\frac{A}{r} *\left[1-\frac{1}{(1+r)^{n}}\right]$, where A - the received amount, r - the interest rate and n number of periods over which the annual payments are received.
- In our example $A=100, r=0.05, n=10$. Therefore, $V(10,0.05,100)=772.1735$.

What happens to $V(n)$ if we increase n ?

Motivating Example

- $V(n, 0.05,100)=\frac{100}{0.05} *\left[1-\frac{1}{(1+0.05)^{n}}\right]$

Graphically:

- What happens to $V(n)$ if we increase n ?
$\Leftrightarrow \lim _{n \rightarrow \infty} V(n)=\lim _{n \rightarrow \infty}\left(\frac{100}{0.05} *\left[1-\frac{1}{(1+0.05)^{n}}\right]\right)=?$

Motivating Example

- $\lim _{n \rightarrow \infty} V(n)=\lim _{n \rightarrow \infty}\left(\frac{A}{r} *\left[1-\frac{1}{(1+r)^{n}}\right]\right)=\frac{A}{r}$
- $\lim _{n \rightarrow \infty} V(n)=\frac{100}{0.05}=2000$
- Graphically:

Motivating Example

- $\lim _{n \rightarrow \infty} V(n)=\frac{A}{r}$ is an "easy limit".

What about:

- $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}-4 x+1}-x}=$?
- $\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}=$?
- $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=$?
- $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=$?

Rules of how to deal with limits are to be introduced.

Notation

- \mathbb{N} - the set of natural numbers $(0,1,2,3, \ldots)$
- \mathbb{Z} - the set of integers $(0, \pm 1, \pm 2, \pm 3, \ldots)$
- \mathbb{R} - the set of real numbers (any point of the real line)
- \mathbb{R}_{++}- the set of positive real numbers
- \in - in: indicator of set membership
- \forall - for all
- \exists - there exists
- \rightarrow - goes to
- $g: \mathbb{R} \rightarrow \mathbb{R}$ - a real-valued function with a real-valued argument
- / - not, e.g. $x=\sqrt{3}, x \notin \mathbb{Z}$
- $k!=k \cdot(k-1) \cdot(k-2) \cdot \ldots 2 \cdot 1$

Basic Definitions

- $g: \mathbb{R} \rightarrow \mathbb{R}$
- g - real-valued function with a real-valued argument

Conveyor belt

- g takes a real number as an argument and produces a real number as an output
- Notice that $g: \mathbb{R} \rightarrow \mathbb{R}$ doesn't mean that any real value can be obtained as an output (e.g. $g(x)=x^{2}$)

Basic Definitions

- The limit of $g(x)$ as $x \rightarrow x_{0}$ exists and is finite and equals to I if and only if for any $\varepsilon>0$ there exists $\delta>0$ such that $|g(x)-l|<\varepsilon$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$.
- Read as \backslash Elaborately: The limit of $g(x)$ as $x \rightarrow x_{0}$ (as argument x approaches a fixed value x_{0}) exists (notice that ∞ and $(-\infty)$ are also included into "exists") and is finite and equals to / if and only if for any $\varepsilon>0$ (very small positive number ε) there exists $\delta>0$ such that $|g(x)-I|<\varepsilon$ (we can make $g(x)$ very close to the limiting value I) for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ (for every x in the interval).

Basic Definitions

- Mathematically: $\lim _{x \rightarrow x_{0}} g(x)=I$ iff $\forall \varepsilon>0, \exists \delta>0$ s.t. $|g(x)-I|<\varepsilon, \forall\left|x-x_{0}\right|<\delta$.
- Graphically:

Basic Definitions

- $\lim _{x \rightarrow x_{0}} g(x)=\infty$ iff $\forall C>0, \exists \delta>0$ s.t. $g(x)>C$, $\forall\left|x-x_{0}\right|<\delta$.
- $\lim _{x \rightarrow x_{0}} g(x)=-\infty$ iff $\forall C<0, \exists \delta>0$ s.t. $g(x)<C$, $\forall\left|x-x_{0}\right|<\delta$.
- $\lim _{x \rightarrow \infty} g(x)=I$ iff $\forall \varepsilon>0, \exists b$ s.t. $|g(x)-I|<\varepsilon, \forall x>b$.

Basic Definitions: Horizontal Asymptotes

- What happens to $f(x)=\frac{x^{2}-3}{x^{2}+4}$ as the argument x goes to infinity?
$\Leftrightarrow \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x^{2}-3}{x^{2}+4}=?$
- Definition: the line $y=L$ is called a horizontal asymptote if $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$ (notice that the L's in the definitions are not necessarily the same)
- Graphically:

Basic Definitions

- $\lim _{x \rightarrow x_{0}^{+}}$- right-hand limit (i.e. $x \rightarrow x_{0}$ and $x>x_{0}$)

- \lim - left-hand limit (i.e. $x \rightarrow x_{0}$ and $x<x_{0}$) $x \rightarrow x_{0}^{-}$

- Example:
- $f(x)= \begin{cases}x+1, & x>0 \\ -x+2, & x<0\end{cases}$
- $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+1)=1$
- $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-x+2)=2$

Evaluating Limits

Suppose $c \in \mathbb{R}$ (i.e. c is a real-valued constant) and the limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist (i.e. need not to be finite but can't be of the form $\%$ or $\infty / \infty)$ then

- $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} c \cdot f(x)=c \cdot \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$
- $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$

Evaluating Limits

Let $c>0$ be a positive constant then

- $\lim _{x \rightarrow \infty} c^{\frac{1}{x}}=1$
- $\lim _{x \rightarrow \infty} x^{\frac{1}{x}}=1$

Let $k \in \mathbb{N} \backslash\{0\}$ and if $c>0$ is a positive constant then

- $\lim _{k \rightarrow \infty} c^{\frac{1}{k}}=1$
- $\lim _{k \rightarrow \infty} \frac{c^{k}}{k!}=0$

Evaluating Limits: L'Hôpital's Rule

- Evaluate the following expression: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$.
- Remember the rules for evaluating limits. If we use the rule for the quotient of two functions, we will obtain the following expression: $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{\lim _{x \rightarrow 0} \sin (x)}{\lim _{x \rightarrow 0} 0}=\frac{0}{0}$
- Division by zero is not allowed. The function is, however, defined over the entire real line except for the point $x=0$.
- Graphically:

- \Rightarrow Use L'Hôpital's Rule!

Evaluating Limits: L'Hôpital's Rule

- Let x_{0} be a real number (or $\left.\pm \infty\right)$ and let $f(x)$ and $g(x)$ be differentiable functions.
- Rule: Suppose $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0$ or $\pm \infty$. If
$\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists and there is an interval (a, b) containing x_{0}
such that $g(x) \neq 0$ for all $x \in(a, b) \backslash x_{0}$, then $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}$
exists and $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

Evaluating Limits: L'Hôpital's Rule

Examples:

- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \sin (x)}{\frac{d}{d x} x}=\lim _{x \rightarrow 0} \cos (x)=1$
- $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln (x)}{\frac{d}{d x} x}=\lim _{x \rightarrow \infty} \frac{1}{x}=0$
- $\lim _{x \rightarrow 0} \frac{e^{e \cdot x}-1}{e \cdot x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{e \cdot x}-1\right)}{\frac{d}{d x}(e \cdot x)}=\lim _{x \rightarrow 0} \frac{e \cdot e^{e \cdot x}}{e}=1$
- $\lim _{x \rightarrow \infty} \frac{x^{3}-2}{x^{2}+3}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(x^{3}-2\right)}{\frac{d}{d x}\left(x^{2}+3\right)}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{2 x}=$
$\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(3 x^{2}\right)}{\frac{d}{d x}(2 x)}=\lim _{x \rightarrow \infty} \frac{6 x}{2}=\infty$

Types of Limits

(1) "Easy" Limits:
e.g. $\lim _{x \rightarrow 4} \frac{x+3}{x^{2}+1}=\frac{4+3}{4^{2}+1}=\frac{7}{17}$
(2) "Harder" Limits:
e.g. $\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}$ results into the uncertainty of the $\frac{0}{0}$-type.
Some further " manipulations" are needed.

Types of Limits

Example:

$$
\begin{aligned}
& \text { - } \lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}-4 x+1}-x}= \\
& \lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}-4 x+1}-x} * \frac{\sqrt{x^{2}-4 x+1}+x}{\sqrt{x^{2}-4 x+1}+x}=
\end{aligned}
$$

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-4 x+1}+x}{x^{2}-4 x+1-x^{2}}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-4 x+1}+x}{1-4 x} * \frac{\frac{1}{x}}{\frac{1}{x}}=
$$

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{1-\frac{4}{x}-\frac{1}{x^{2}}}+1}{\frac{1}{x}-4}=\frac{2}{-4}=-\frac{1}{2}
$$

Continuity

- Definition: a function $f(x)$ is continuous at x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
- The definition of continuity implies that:
(1) $\lim _{x \rightarrow x_{0}} f(x)$ exists (i.e. $\lim _{x \rightarrow x_{0}^{-}} f(x)$ and $\lim _{x \rightarrow x_{0}^{+}} f(x)$ both exist and

$$
\left.\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)\right)
$$

(2) $f\left(x_{0}\right)$ is defined
(3) $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$

- Definition: a function $f(x)$ is right-continuous at x_{0} if $\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right)$.
- Definition: a function $f(x)$ is left-continuous at x_{0} if $\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)$.

Continuity

- Definition: a function $f(x)$ is continuous on an interval (a, b) if it is continuous at every $x \in(a, b)$.
- Example: left-continuous function $f(x)=\lceil x\rceil$.

$$
f(x)=\operatorname{ceiling}(x)
$$

Continuity

- Example: function $g(x)=\arctan (x)$ is continuous throughout the entire real line \mathbb{R}.

$$
\mathrm{g}(\mathrm{x})=\arctan (\mathrm{x})
$$

- Intuitively: a function is continuous if it can be drawn without taking the arm away from the paper.

Continuity Theorems

- Let f and g be continuous functions at x_{0} and let $c \in \mathbb{R}$, then:
(1) $f+g$
(2) $f-g$
(3) $c \cdot f$
(4) $f \cdot g$
(5) $\frac{f}{g}\left(\right.$ if $\left.g\left(x_{0}\right) \neq 0\right)$
are also continuous functions at x_{0}.
- If g is continuous at x_{0} and f is continuous at $g\left(x_{0}\right)$ then $f \circ g(x)=f(g(x))$ is also continuous at x_{0}.

Continuity and Frequently Used Functions.

- The following functions are continuous on their domains:
- Polynomials $(\mathbb{D}=\mathbb{R}=(-\infty, \infty))$
- Roots functions $\left(\mathbb{D}=\mathbb{R}_{+}=[0, \infty)\right)$
- Logarithmic functions $\left(\mathbb{D}=\mathbb{R}_{++}=(0, \infty)\right)$
- Exponential functions $(\mathbb{D}=\mathbb{R}=(-\infty, \infty))$
- Example. Where is the function $f(x)=\frac{\ln (x)}{x^{2}-1}$ continuous?
(1) The numerator: $g(x)=\ln (x)$ is continuous on $\mathbb{D}=\mathbb{R}_{++}=(0, \infty)$.
(2) The denominator: $h(x)=x^{2}-1$ is continuous on $\mathbb{D}=\mathbb{R}=(-\infty, \infty)$.
(3) The entire function $f(x)$ is a quotient of two other functions. We should, therefore, exclude the values of x that turn the denominator of the function into 0

$$
\left(x^{2}-1=(x-1) \cdot(x+1)=0 \text { if } x= \pm 1\right)
$$

(4) Taking the intersection of the determined intervals and excluding the points $x= \pm 1$, we conclude that $f(x)$ is continuous on $(0,1) \cup(1, \infty)$.

Examples of Discontinuities

Some functions are, however, discontinuous.

Examples of discontinuities:

- Example 1 (Jump Discontinuities): $\lim _{x \rightarrow x_{0}^{-}} f(x)$ and
$\lim _{x \rightarrow x_{0}^{+}} f(x)$ both exist but $\lim _{x \rightarrow x_{0}^{-}} f(x) \neq \lim _{x \rightarrow x_{0}^{+}} f(x)$
(see slide 15).
- Example 2: $\lim _{x \rightarrow x_{0}^{-}} f(x)$ and $\lim _{x \rightarrow x_{0}^{+}} f(x)$ both exist and $\lim _{x \rightarrow x_{0}^{-}} f(x)=\lim _{x \rightarrow x_{0}^{+}} f(x)$ but $f\left(x_{0}\right)$ is not defined.
Example: function $f(x)=\frac{1-\cos (x)}{x}$ is not defined at $x_{0}=0$.

Examples of Discontinuities

- Example 3 (Infinite Discontinuities):

As an example consider the function $f(x)=\frac{1}{x}$. Graphically:

The $\lim _{x \rightarrow 0^{-}} f(x)=-\infty$ but $\lim _{x \rightarrow 0^{+}} f(x)=+\infty$.

Examples of Discontinuities

- Example 4: Consider the function $f(x)=\sin \left(\frac{1}{x}\right)$ as $x \rightarrow 0$. Graphically:

$$
f(x)=\sin (1 / x)
$$

Neither left, not right limit exists!

Continuity: Theorem (Differentiability \Rightarrow Continuity)

- Theorem (Differentiability \Rightarrow Continuity): if $f(x)$ is differentiable at x_{0} then $f(x)$ is continuous at x_{0}. Proof:
(1) We can rewrite the definition of continuity as $\lim _{x \rightarrow x_{0}} f(x)-f\left(x_{0}\right) \stackrel{?}{=} 0$. This is what we need to show.
(2) $\lim _{x \rightarrow x_{0}} f(x)-f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot\left(x-x_{0}\right)=$

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot 0=0
$$

- Notice that the converse statement is not true, i.e. Differentiability \nLeftarrow Continuity.

Continuity: Theorem (Differentiability \Rightarrow Continuity)

- Example: the function $f(x)=|x|$ is continuous on $\mathbb{D}=\mathbb{R}$ but is not differentiable at $x_{0}=0$.
Graphically:

$$
\mathbf{f}(\mathbf{x})=|\mathbf{x}|
$$

Differentiation

The goal of this lecture is to provide theoretical knowledge to answer the following two questions:
(1) What is a derivative?

- geometrical interpretation
- physical interpretation
(2) How to differentiate any function you know?

$$
\frac{d}{d x}\left(e^{\frac{\ln (x)}{\arctan (x)}}\right)=?
$$

Derivatives. Geometrical Interpretation.

- Suppose that we need to find an equation for the tangent line $y=I(x)$ to the function $y=f(x)$ at some point $P\left(x_{0}, y_{0}\right)$.
Graphically:

- Definition: a line $y=I(x)$ is tangent to the curve $f(x)$ at a point $P\left(x_{0}, y_{0}\right)$ if $\exists \delta>0$ s.t.:
- $f(x)>I(x)$ on $\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)$ or
- $f(x)<l(x)$ on $\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)$ and
- $f\left(x_{0}\right)=I\left(x_{0}\right)$.

Derivatives. Geometrical Interpretation.

- Definition: a secant line of a curve is a line that intersects two points on the curve.

Graphically:

Secant and Tangent Lines

- Tangent line $=$ limit of the secant lines $P Q$ as $Q \rightarrow P$ (given that P stays fixed).

Derivatives. Geometrical Interpretation.

- The slope of the curve $f(x)$ equals to the slope of the line $I(x)$ at the point x_{0}.
- Back to the original task: determining the equation for the tangent line.
A line $I(x)$ passing through $P\left(x_{0}, y_{0}\right)$ is determined by the following expression:

$$
y-y_{0}=m *\left(x-x_{0}\right)
$$

Thus, to determine the equation for the tangent line we need:
(1) point $P\left(x_{0}, y_{0}=f\left(x_{0}\right)\right)$ and
(2) slope $m=f^{\prime}\left(x_{0}\right)$ (the only calculus part).

Derivatives. Geometrical Interpretation.

- Definition: the derivative of $f(x)$ at x_{0}, denoted by $f^{\prime}\left(x_{0}\right)$, is the slope of the tangent line to $y=f(x)$ at $P\left(x_{0}, y_{0}\right)$.
- Finding the slope of the tangent line:

$\underbrace{\frac{\Delta f}{\Delta x}}_{\text {slope of the secant line }} \stackrel{\Delta x \rightarrow 0}{\longrightarrow} \underbrace{m=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}}_{\text {slope of the tangent line }}$

Derivatives. Geometrical Interpretation.

- Summing things up: the slope of the tangent line at $P\left(x_{0}, y_{0}\right)$ is given by:

$$
f^{\prime}\left(x_{0}\right)=m=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}
$$

- Definition: a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable at a point $x_{0} \in \mathbb{R}$ if $\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}$ exists (notice that the limit needs not to be finite).
- Definition: a function $f(x)$ is differentiable at an open interval (a, b) if it is differentiable at every point $x \in(a, b)$.

Derivatives. Geometrical Interpretation.

Example: using the definition introduced above derive the derivative of the function $f(x)=\frac{1}{x}$ at x_{0}.
(1) Construct the difference quotient $\frac{\Delta f}{\Delta x}$ first:

$$
\begin{aligned}
& \frac{\Delta f}{\Delta x}=\frac{\frac{1}{x_{0}+\Delta x}-\frac{1}{x_{0}}}{\Delta x}=\frac{1}{\Delta x} \cdot\left(\frac{x_{0}-\left(x_{0}+\Delta x\right)}{\left(x_{0}+\Delta x\right) \cdot x_{0}}\right)= \\
& \frac{1}{\Delta x} \cdot\left(\frac{-\Delta x}{\left(x_{0}+\Delta x\right) \cdot x_{0}}\right)=\frac{1}{\left(x_{0}+\Delta x\right) \cdot x_{0}} .
\end{aligned}
$$

(2) Consider what happens as Δx approaches 0 :

$$
\begin{aligned}
& \frac{\Delta f}{\Delta x}=\frac{1}{\left(x_{0}+\Delta x\right) \cdot x_{0}} \xrightarrow{\Delta x \rightarrow 0}-\frac{1}{x_{0}^{2}} . \\
& f^{\prime}\left(x_{0}\right)=-\frac{1}{x_{0}^{2}}
\end{aligned}
$$

Derivatives. Geometrical Interpretation.

Graphically:

- Function $f(x)=\frac{1}{x}$:

- Derivative $f^{\prime}(x)=-\frac{1}{x^{2}}$:

Derivatives. Geometrical Interpretation.

- A quick check-up of the consistency of the obtained results:
(1) The expression $f^{\prime}(x)=-\frac{1}{x^{2}}$ is always negative which corresponds to negative slopes of the tangent lines to $f(x)=\frac{1}{x}$ at any point of the domain.
(2) As x goes to infinity the slope of the tangent lines becomes less and less steep which corresponds to $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.
- Remark on notation:
notice that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ and $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$. Thus, writing that $\lim _{x \rightarrow 0} f(x)=\infty$ is not sloppy but simply wrong!
However, $\lim _{x \rightarrow 0^{+}}-\frac{1}{x^{2}}=-\infty$ and $\lim _{x \rightarrow 0^{-}}-\frac{1}{x^{2}}=-\infty$. In this
case saying that $\lim _{x \rightarrow 0}-\frac{1}{x^{2}}=-\infty$ is correct.

Derivatives. More Notation.

- $y=f(x), \Delta y=\Delta f$;

$$
\underbrace{f^{\prime}}_{\text {ton's notation }}=\underbrace{\frac{d f}{d x}=\frac{d y}{d x}=\frac{d}{d x} f .}_{\text {Leibniz's notation }}
$$

- Higher Derivatives:

If $u=u(x)$ is an n-time differentiable function of x then:

- $u^{\prime}(x)=\frac{d u}{d x}=D x$ is also a function of x and is referred to as the first derivative of $u(x)$.
- $\left(u^{\prime}(x)\right)^{\prime}=u^{\prime \prime}(x)=\frac{d}{d x} \frac{d u}{d x}=\frac{d^{2}}{d x^{2}} u=D^{2} u$ is also a function of x and is referred to as the second derivative of $u(x)$.
- $\left(u^{(n-1)}(x)\right)^{\prime}=u^{(n)}(x)=\frac{d}{d x} \frac{d^{n-1} u}{d x^{n-1}}=\frac{d^{n}}{d x^{n}} u=D^{n} u$ is also a function of x and is referred to as the $n^{\text {th }}$ derivative of $u(x)$.

Derivatives.

Example: using the definition introduced above derive the derivative of the function $f(x)=x^{n}$ for $n \in \mathbb{N}$.
(1) Construct the difference quotient $\frac{\Delta f}{\Delta x}$ first:

$$
\begin{aligned}
& \frac{\Delta f}{\Delta x}=\frac{(x+\Delta x)^{n}-x^{n}}{\Delta x}=\frac{1}{\Delta x} \cdot\left(x^{n}+n x^{n-1} \Delta x+\mathbb{O}\left((\Delta x)^{2}\right)-x^{n}\right)= \\
& \frac{1}{\Delta x} \cdot\left(n x^{n-1} \Delta x+\mathbb{O}\left((\Delta x)^{2}\right)\right)=n x^{n-1}+\mathbb{O}(\Delta x)
\end{aligned}
$$

(2) Consider what happens as Δx approaches 0 :

$$
\begin{aligned}
& \frac{\Delta f}{\Delta x}=n x^{n-1}+\mathbb{O}(\Delta x) \xrightarrow{\Delta x \rightarrow 0} n x^{n-1} . \\
& f^{\prime}(x)=\frac{d}{d x} x^{n}=n x^{n-1}, n \in \mathbb{N}
\end{aligned}
$$

Derivatives. Physical Interpretation.

- Consider the following graph:

- $\frac{\Delta y}{\Delta x}$ - relative or average rate of change
$\frac{\Delta y}{\Delta x} \xrightarrow{\Delta x \rightarrow 0} \frac{d y}{d x}$ - instanteneous rate of change

Derivatives. Physical Interpretation.

Example (Pumpkin Drop):

- Suppose you're participating in a contest dedicated to the Halloween Celebration. The goal of the contest is to throw a pumpkin from the top of KG II as precisely on the mark on the nearby lawn as possible.
- Assuming that the equation $h(t)=80-5 t^{2}$ describes the coordinate of the vertical position of the pumpkin, calculate:
(1) the average velocity of the pumpkin assuming it was falling for $t=4$ seconds;
(2) the instanteneous velocity of the pumpkin at $t=4$.

Derivatives. Physical Interpretation.

Solution:

- The average velocity of the pumpkin throughout the time interval $\left(t_{0}, t_{1}\right)$ is given by $\frac{\Delta h}{\Delta t}=\frac{h_{1}-h_{0}}{t_{1}-t_{0}}=\frac{0-80}{4-0}=-20 \mathrm{~m} / \mathrm{s}$.
- The instanteneous velocity of the pumpkin at $t=4$ is given by $\frac{d}{d t} h=\frac{d}{d t}\left(80-5 t^{2}\right)=0-10 t$. At $t=4$ the instanteneous velocity equals to $\left.\frac{d}{d t} h\right|_{t=4}=\left.(0-10 t)\right|_{t=4}=-40 \mathrm{~m} / \mathrm{s}$.

Derivatives: Frequently Used Rules. Product Rule.

The Product Rule allows to take derivatives of the product of functions for which derivatives exist.

$$
\text { E.g. } \frac{d}{d x}\left(x^{n} \sin (x)\right)=?
$$

Product Rule: suppose $u(x)$ and $v(x)$ are differentiable functions, then $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$

Derivation of the rule:

- Consider the change in the functional value first:

$$
\begin{aligned}
& \Delta(u v)=u(x+\Delta x) \cdot v(x+\Delta x)-u(x) \cdot v(x)= \\
& (u(x+\Delta x)-u(x)) \cdot v(x+\Delta x)+u(x) \cdot v(x+\Delta x)-u(x) \cdot v(x)= \\
& (u(x+\Delta x)-u(x)) \cdot v(x+\Delta x)+u(x) \cdot(v(x+\Delta x)-v(x))= \\
& \Delta u \cdot v(x+\Delta x)+u(x) \cdot \Delta v .
\end{aligned}
$$

Derivatives: Frequently Used Rules. Product Rule.

- Construct the difference quotient and consider what happens if $x \rightarrow 0$:

$$
\begin{aligned}
& \frac{\Delta(u v)}{\Delta x}=\frac{\Delta u \cdot v(x+\Delta x)+u(x) \cdot \Delta v}{\Delta x}= \\
& \frac{\Delta u}{\Delta x} \cdot v(x+\Delta x)+u(x) \cdot \frac{\Delta v}{\Delta x} \xrightarrow{\Delta x \rightarrow 0} \frac{d u}{d x} v(x)+u(x) \frac{d v}{d x} .
\end{aligned}
$$

$$
\frac{d}{d x}(u v)=\frac{d u}{d x} v(x)+u(x) \frac{d v}{d x}
$$

Derivatives: Frequently Used Rules. Quotient Rule.

The Quotient Rule allows to take derivatives of the quotient of two functions for which derivatives exist.
E.g. $\frac{d}{d x}\left(\frac{1}{x^{n}}\right)=$?

Quotient Rule: suppose $u(x)$ and $v(x)$ are differentiable functions, then $\left(\frac{u}{v}\right)^{\prime}=\frac{u^{\prime} v-u v^{\prime}}{v^{2}}$

Derivation of the rule:

- Consider the change in the functional value first:

$$
\Delta\left(\frac{u}{v}\right)=\frac{u+\Delta u}{v+\Delta v}-\frac{u}{v}=\frac{u v+(\Delta u) v-u v-(\Delta v) u}{(v+\Delta v) v}=\frac{v \cdot \Delta u-u \cdot \Delta v}{(v+\Delta v) \cdot v}
$$

Derivatives: Frequently Used Rules. Quotient Rule.

- Construct the difference quotient and consider what happens if $x \rightarrow 0$:

$$
\begin{aligned}
& \frac{\Delta\left(\frac{u}{v}\right)}{\Delta x}=\frac{\frac{\Delta u}{\Delta x} v-u \frac{\Delta v}{\Delta x}}{(v+\Delta v) v} \xrightarrow{\Delta x \rightarrow 0} \frac{\frac{d u}{d x} v-\frac{d v}{d x} u}{v \cdot v} \\
& \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\frac{d u}{d x} v-\frac{d v}{d x} u}{v \cdot v}
\end{aligned}
$$

Derivatives: Frequently Used Rules. Chain Rule.

The Chain Rule allows to take derivatives of composite functions.
Chain Rule: if $f(x)$ and $g(x)$ are differentiable functions then the composite function $(g \circ f)(x)=g(f(x))$ is also differentiable and

$$
((g \circ f)(x))^{\prime}=\left(g(f(x))^{\prime}=g^{\prime}(f(x)) \cdot f^{\prime}(x)\right.
$$

Example:
$\frac{d}{d t}(\sin (t))^{10}=\underbrace{10(\sin (t))^{9}}_{\text {derivative of the outer function derivative of the inner function }}$

Derivatives: Chain Rule and Substitution Method.

Substitution Method (Leibniz's Notation):

Suppose $f(x)$ and $g(x)$ are differentiable functions. Consider a composite function $g(f(x))$ and let $u=f(x)$, then $g(f(x))=g(u)$
and $\frac{d}{d x} g(u)=\frac{d g(u)}{d u} \cdot \frac{d u(u)}{d x}$.
Example: consider the function $g(x)=\sin \left(x^{2}\right)$. Find $\frac{d}{d x} \sin \left(x^{2}\right)$ using the substitution method.
Solution:

- Let $f(x)=x^{2}=u$, then $g(f(x))=\sin \left(x^{2}\right)=g(u)$.
- We can then find the derivative using the substitution method:

$$
\frac{d}{d x} g(u)=\frac{d}{d x} \sin (u)=\frac{d \sin (u)}{d u} \cdot \frac{d u}{d x}=\cos (u) \cdot 2 x=\cos \left(x^{2}\right) \cdot 2 x
$$

Implicit Differentiation

- Consider the function $y=x^{\frac{m}{n}}$ with $m, n \in \mathbb{N} \backslash\{0\}$. Our goal is to find $\frac{d}{d x} x^{\frac{m}{n}}$.
- The approach will be to treat y as an implicit function of x. Therefore, $y=x^{\frac{m}{n}} \Rightarrow y^{n}=x^{m}$.

$$
\begin{aligned}
& \underbrace{\frac{d}{d x} y^{n}}_{\text {chain rule }}=\frac{d}{d x} x^{m} \Rightarrow\left(\frac{d}{d y} y^{n}\right) \cdot \frac{d y}{d x}=m x^{m-1} \\
& \Rightarrow n y^{n-1} \frac{d y}{d x}=m x^{m-1}
\end{aligned}
$$

$$
\Rightarrow \frac{d}{d x} x^{\frac{m}{n}}=\frac{m}{n} \cdot x^{\frac{m}{n}-1}
$$

Implicit Differentiation

Example: y is defined by $y^{4}+x y^{2}-2=0$ as an implicit function of x. Find the expression for $\frac{d y}{d x}$.

- Explicit Solution:

$$
\begin{aligned}
& y^{2}=\frac{-x \pm \sqrt{x^{2}+8}}{2} \\
& \Rightarrow y= \pm \sqrt{\frac{-x \pm \sqrt{x^{2}+8}}{2}}
\end{aligned}
$$

Taking the derivative of this expression is very unpleasant.

- Implicit Solution: leave the expression as it is and differentiate the both sides.
$\frac{d}{d x}\left(y^{4}+x y^{2}-2=0\right)$
$4 y^{3} y^{\prime}+y^{2}+2 x y y^{\prime}=0$
$\left(4 y^{3}+2 x y\right) y^{\prime}=-y^{2} \quad \Rightarrow \quad y^{\prime}=\frac{-y^{2}}{4 y^{3}+2 x y}$.

