Functions

Daria Lavrentev
University of Freiburg

October 8, 2014
(1) Basic Definitions
(2) Simple Real Functions
(3) Useful Formulas

Basic Definitions

A function of a real variable x with domain D is a rule that asigns a unique real number to each number $x \in D$.
As x varies over the whole domain, the set of all possible resulting values $f(x)$ is called the range of f, that is:

$$
\begin{gathered}
B=\{y \in \mathbb{R} \mid y=f(x), x \in D\} \\
f: D \rightarrow B \subset \mathbb{R} \\
x \mapsto f(x)
\end{gathered}
$$

Basic Definitions

- The variable x is often called the independent variable, or the argument of f.
- One often defines $y=f(x)$. In this case y is refered to as the dependent variable.
- Function f is said to be one-to-one function in $A \subset D$ if f never has the same value for any two different points in A. This is equivalent to:
f is a one-to-one function $\Leftrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$

Basic Definitions

Let f be a function with domain D and range B. If and only if f is a one-to-one function, it has an inverse function f^{-1} with domain B and range D. For each $y \in B$, the value $f^{-1}(y)$ is the unique number $x \in D$ such that $f(x)=y$

$$
f^{-1}(y)=x \Leftrightarrow f(x)=y
$$

Example

$$
\begin{gathered}
f:[0,2] \rightarrow[0,4] \\
f(x)=x^{2} \Longrightarrow f^{-1}=\sqrt{x}
\end{gathered}
$$

Note that $f^{-1} \neq \frac{1}{f}$

Graph of a Real Function

For a given real function $f(x)$, its grapgh is the graphical representation of the set $\{(x, f(x)): x \in D\}$

Monotonic functions

Let f be a function defined on an interval $I \subset \mathbb{R}$ and x_{1} and x_{2} be two numbers in I. We say that:

- if $f\left(x_{2}\right) \geq f\left(x_{1}\right)$ whenever $x_{2} \geq x_{1}$, then f is a monotonic increasing on l.
- if $f\left(x_{2}\right)>f\left(x_{1}\right)$ whenever $x_{2} \geq x_{1}$, then f is strictly monotonic increasing on I.
- if $f\left(x_{2}\right) \leq f\left(x_{1}\right)$ whenever $x_{2} \geq x_{1}$, then f is a monotonic decreasing on l.
- if $f\left(x_{2}\right)<f\left(x_{1}\right)$ whenever $x_{2} \geq x_{1}$, then f is strictly monotonic decreasing on l.

Even (symmetric) and Odd (asymmetrical) Functions

- An univariate function $f(x)$ is said to be even if $f(x)=f(-x)$ Geometrically, such functions are symmetric about the y-axis.
- An inivariate function $f(x)$ is said to be odd if $f(x)=-f(-x)$.
Geometrically, such functions are asymmetric about the y-axis.

Examples

- $f(x)=x^{2}, g(z)=z^{4}$, constant function, standard normal distribution function,...
- $f(x)=x, f(x)=x^{3}, \ldots$

Linear Functions

A linear function is a function of the following form:

$$
f(x)=a x+b
$$

where $a, b \in \mathbb{R}$
a is the slope and b is the intercept
Examples

- $f(x)=2 x-5$
- $g(z)=\frac{2}{5} z+3.78$
- $g(x)=-18 x+k, k \in \mathbb{R}$

Quadratic Functions

A quadratic function is a function of the following form:

$$
f(x)=a x^{2}+b x+c
$$

where $a, b, c \in \mathbb{R}$

Examples

- $f(x)=x^{2}+10 x-3$
- $f(x)=-5 x^{2}+4 x$

Graph of a quadratic function is parabola. The shape of the parabola is defined by the coefficients a, b, and c.

Polynomials

Linear and quadratic functions are just examples of a more general class of polynomial function, which are the functions of the form:

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=\sum_{k=0}^{n} a_{k} x^{k}
$$

where $a_{k} \in \mathbb{R}, k=0,1,2, \ldots, n$. n is refered to as the order or degree of the given polynomial. a_{0} is sometimes called the free coefficient.

Examples

- $f(x)=20 x^{7}+10 x-3$
- $f(x)=-5 x^{125}+4 x^{14}$

Rational Functions

A rational function is a function that can be represented as a fraction of two polynomial functions.

$$
R(x)=\frac{P(x)}{Q(x)}
$$

where $P(x)$ and $Q(x)$ are polynomials and $Q(x) \neq 0$.
Examples

- $G(z)=\frac{1+25 z^{23}}{-98+38 z^{3}-0.5 z^{123}}$
- $I(x)=\frac{\sum_{i=1}^{k} a_{k} x^{k}}{1-x}$

Power Functions

A general power function is defined as:

$$
f(x)=A x^{r}
$$

where A and r are constants. Note that if $r<0$ one has to exclude $x=0$ from the domain. power function

Example

- $g(y)=\frac{1}{4} y^{4}$
- $f(z)=2 z^{-\frac{1}{2}}$

Reminder: Operations with powers

- $x^{a} \times x^{b}=x^{a+b}$
- $x^{-b}=\frac{1}{x^{b}}$
- $\frac{x^{a}}{x^{b}}=x^{a-b}$
- $x^{\frac{1}{a}}=\sqrt[a]{x}$
- $x^{\frac{b}{c}}=\sqrt[c]{x^{b}}$
- $x^{a} \times y^{a}=(x y)^{a}$

The Natural Exponential Function

The natural exponent function is the function

$$
f(x)=a e^{x}
$$

where $a \in \mathbb{R}$ and $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.718281828459045 \ldots$

Operations with exponents

- $e^{x} \times e^{y}=e^{x+y}$
- $e^{x-y}=\frac{e^{x}}{e^{y}}$
- $\prod_{i=1}^{n} e^{x_{i}}=e^{\sum_{i=1}^{n} x_{i}}$

Logarithmic Function (natural logarithm)

For each positive number x, the number $\ln (x)$ is defined by $e^{\ln x}=x$.
Or in other words, $u=\ln (x)$ is the solution of the equation $e^{u}=x$

$$
g(x)=\ln (x)
$$

where $x>0$.

Operations with logarithms

- $\ln (x y)=\ln (x)+\ln (y)$
- $\ln \left(\frac{x}{y}\right)=\ln (x)-\ln (y)$
- $\ln \left(x^{a}\right)=a \ln (x)$

Graphical representation:

So far we have mostly consiedered functions of a single variable, however one must often work with functions of multiple variables.

$$
f: D \rightarrow \mathbb{R}
$$

where the domain $D \in \mathbb{R}^{n}$, thus

$$
x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto f(x)
$$

A real function of multiple variables is usually defined as a combination of a single variable real functions.

Examples

- $f(x, y)=\log \left(x+y^{2}\right)$
- $g(x, y, z)=y e^{x} \sqrt{25 z}$
- $u\left(x_{1}, x_{2}, x_{3}\right)=\pi_{1} x_{1}+\pi_{2} x_{2}+\pi_{3} x_{3}$, where $\pi_{1}, \pi_{2}, \pi_{3} \in \mathbb{R}$

Composition of Functions

Function composition is the application of one function to the results of another. Given two real functions $f(x): \mathbb{R} \rightarrow \mathbb{R}$ and $g(y): \mathbb{R} \rightarrow \mathbb{R}$ we define $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f \circ g(x)=f(g(x))
$$

Example

$$
\begin{gathered}
f(x)=2 x+5, g(x)=5 e^{2 x} \\
\Rightarrow g \circ f(x)=5 e^{4 x+10} \text { and } f \circ g(x)=10 e^{2 x}+5
\end{gathered}
$$

Note that usually $g \circ f(x) \neq f \circ g(x)$!

Exercise

$$
f(x)=2 x^{2}+5, g(x)=e^{x-1}, h(x)=\sqrt{x} \text { find } g \circ f \circ h(x)
$$

Compound Functions

Up to now we have seen functions which were defined by the same rule for all the values of the domain. However one can define a function by a different rule for each of a number of disjoint parts of the domain.

Example 1

$$
f(x)= \begin{cases}x^{2}, & x \in[0,2] \\ 4, & x>2 \\ 0, & \text { otherwise }\end{cases}
$$

Example 2

A step function

$$
g(y)=k, y \in[k, k+1) \text { for } k=0,1,2, \ldots
$$

Some Useful Formulas

- $\sum_{i=1}^{n} i=\frac{1}{2} n(n+1)$

For $x \in(-1,1)$

- $\sum_{i=1}^{N} x^{i}=\frac{1-x^{N+1}}{1-x}$
- $\sum_{i=1}^{\infty} x^{i}=\frac{1}{1-x}$
- Newton's binomial formula
- $(a+b)^{2}=a^{2}+2 a b+b^{2}$
- $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
- $(a+b)^{m}=\sum_{k=0}^{m}\binom{m}{k} a^{k} b^{m-k}$ where $\binom{m}{k}=\frac{m!}{k!(m-k)!}$

