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Basic Definitions

A function of a real variable x with domain D is a rule that
asigns a unique real number to each number x ∈ D.
As x varies over the whole domain, the set of all possible resulting
values f (x) is called the range of f , that is:

B = {y ∈ R|y = f (x), x ∈ D}

f : D → B ⊂ R
x 7→ f (x)
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Basic Definitions

• The variable x is often called the independent variable, or
the argument of f .

• One often defines y = f (x). In this case y is refered to as the
dependent variable.

• Function f is said to be one-to-one function in A ⊂ D if f
never has the same value for any two different points in A.
This is equivalent to:
f is a one-to-one function ⇔ f (x1) = f (x2)⇒ x1 = x2
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Basic Definitions

Let f be a function with domain D and range B. If and only if f is
a one-to-one function, it has an inverse function f −1 with domain
B and range D. For each y ∈ B, the value f −1(y) is the unique
number x ∈ D such that f (x) = y

f −1(y) = x ⇔ f (x) = y

Example

f : [0, 2]→ [0, 4]

f (x) = x2 =⇒ f −1 =
√
x

Note that f −1 6= 1

f
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Graph of a Real Function

For a given real function f (x), its grapgh is the graphical
representation of the set {(x , f (x)) : x ∈ D}
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Monotonic functions

Let f be a function defined on an interval I ⊂ R and x1 and x2 be
two numbers in I . We say that:

• if f (x2) ≥ f (x1) whenever x2 ≥ x1, then f is a monotonic
increasing on I .

• if f (x2) > f (x1) whenever x2 ≥ x1, then f is strictly
monotonic increasing on I .

• if f (x2) ≤ f (x1) whenever x2 ≥ x1, then f is a monotonic
decreasing on I .

• if f (x2) < f (x1) whenever x2 ≥ x1, then f is strictly
monotonic decreasing on I .
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Even (symmetric) and Odd (asymmetrical) Functions

• An univariate function f (x) is said to be even if f (x) = f (−x)
Geometrically, such functions are symmetric about the y -axis.

• An inivariate function f (x) is said to be odd if
f (x) = −f (−x).
Geometrically, such functions are asymmetric about the y -axis.

Examples

• f (x) = x2, g(z) = z4, constant function, standard normal
distribution function,...

• f (x) = x , f (x) = x3,...
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Linear Functions

A linear function is a function of the following form:

f (x) = ax + b

where a, b ∈ R
a is the slope and b is the intercept

Examples

• f (x) = 2x − 5

• g(z) = 2
5z + 3.78

• g(x) = −18x + k , k ∈ R
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Quadratic Functions

A quadratic function is a function of the following form:

f (x) = ax2 + bx + c

where a, b, c ∈ R

Examples

• f (x) = x2 + 10x − 3

• f (x) = −5x2 + 4x

Graph of a quadratic function is parabola. The shape of the
parabola is defined by the coefficients a, b, and c .
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Polynomials

Linear and quadratic functions are just examples of a more general
class of polynomial function, which are the functions of the form:

P(x) = anx
n + an−1x

n−1 + ...+ a1x + a0 =
∑n

k=0 akx
k

where ak ∈ R, k = 0, 1, 2, ..., n. n is refered to as the order or
degree of the given polynomial. a0 is sometimes called the free
coefficient.

Examples

• f (x) = 20x7 + 10x − 3

• f (x) = −5x125 + 4x14
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Rational Functions

A rational function is a function that can be represented as a
fraction of two polynomial functions.

R(x) =
P(x)

Q(x)
,

where P(x) and Q(x) are polynomials and Q(x) 6= 0.

Examples

• G (z) = 1+25z23

−98+38z3−0.5z123

• l(x) =

∑k
i=1 akx

k

1− x
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Power Functions

A general power function is defined as:

f (x) = Ax r

where A and r are constants. Note that if r < 0 one has to
exclude x = 0 from the domain. power function

Example

• g(y) = 1
4y

4

• f (z) = 2z−
1
2
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Reminder: Operations with powers

• xa × xb = xa+b

• x−b = 1
xb

• xa

xb
= xa−b

• x
1
a = a
√
x

• x
b
c =

c
√
xb

• xa × ya = (xy)a
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The Natural Exponential Function

The natural exponent function is the function

f (x) = aex

where a ∈ R and e = limn→∞
(
1 + 1

n

)n ≈ 2.718281828459045...
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Operations with exponents

• ex × ey = ex+y

• ex−y =
ex

ey

•
∏n

i=1 e
xi = e

∑n
i=1 xi
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Logarithmic Function (natural logarithm)

For each positive number x , the number ln(x) is defined by
e lnx = x .
Or in other words, u = ln(x) is the solution of the equation eu = x

g(x) = ln(x)

where x > 0.
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Operations with logarithms

• ln(xy) = ln(x) + ln(y)

• ln( xy ) = ln(x)− ln(y)

• ln(xa) = a ln(x)

Graphical representation:
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So far we have mostly consiedered functions of a single variable,
however one must often work with functions of multiple variables.

f : D → R

where the domain D ∈ Rn, thus

x = (x1, x2, ..., xn) 7→ f (x)

A real function of multiple variables is usually defined as a
combination of a single variable real functions.

Examples

• f (x , y) = log(x + y2)

• g(x , y , z) = yex
√

25z

• u(x1, x2, x3) = π1x1 + π2x2 + π3x3, where π1, π2, π3 ∈ R
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Composition of Functions

Function composition is the application of one function to the
results of another. Given two real functions f (x) : R→ R and
g(y) : R→ R we define f ◦ g : R→ R as

f ◦ g(x) = f (g(x))

Example

f (x) = 2x + 5, g(x) = 5e2x

⇒ g ◦ f (x) = 5e4x+10 and f ◦ g(x) = 10e2x + 5

Note that usually g ◦ f (x) 6= f ◦ g(x)!

Exercise

f (x) = 2x2 + 5, g(x) = ex−1, h(x) =
√
x find g ◦ f ◦ h(x)
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Compound Functions

Up to now we have seen functions which were defined by the same
rule for all the values of the domain. However one can define a
function by a different rule for each of a number of disjoint parts
of the domain.

Example 1

f (x) =


x2, x ∈ [0, 2]
4, x > 2
0, otherwise

Example 2

A step function

g(y) = k , y ∈ [k, k + 1) for k = 0, 1, 2, ...
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Some Useful Formulas

•
∑n

i=1 i = 1
2n(n + 1)

For x ∈ (−1, 1)

•
∑N

i=1 x
i =

1− xN+1

1− x

•
∑∞

i=1 x
i =

1

1− x
• Newton’s binomial formula

• (a + b)2 = a2 + 2ab + b2

• (a + b)3 = a3 + 3a2b + 3ab2 + b3

...

• (a + b)m =
∑m

k=0

(
m
k

)
akbm−k where

(
m
k

)
= m!

k!(m−k)!
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