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Increasing and Decreasing Functions

Consider a function f (x) that is de�ned on an interval I and let
x1, x2 ∈ I , then:

• If f (x2) ≥ f (x1) whenever x2 > x1, then f (x) is increasing in
I .

• If f (x2) f (x1) whenever x2 > x1, then f (x) is strictly
increasing in I.

• If f (x2) ≤ f (x1), then f (x) is decreasing in I.

• If f (x2) < f (x1), then f (x) is strictly decreasing in I.

Graphically:
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Increasing and Decreasing Functions

Consider a di�erentiable function f (x) and an interval I from its
domain. We can obtain the following information regarding the
function from its �rst derivative:

• If f ′(x) ≥ 0 for all x ∈ I then f (x) is increasing in I .

• If f ′(x) ≥ 0 for all x ∈ I then f (x) is strictly increasing in I .

• If f ′(x) ≤ 0 for all x ∈ I then f (x) is decreasing in I .

• If f ′(x) ≤ 0 for all x ∈ I then f (x) is strictly decreasing in I .

• If f ′(x) = 0 for all x ∈ I then f (x) is constant in I .

Graphically:
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Convex and Concave Functions

Consider a twice-di�erentiable function f (x) and an interval I from
its domain. We can obtain the following information regarding the
shape of the function from its second derivative:

• If f ′′(x) ≥ (>) 0 for all x ∈ I then f ′(x) is an increasing
function in I and f (x) is a convex (strictly convex) function
in I .

Graphically:
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Convex and Concave Functions

• If f ′′(x) ≤ (<) 0 for all x ∈ I then f ′(x) is a decreasing
function in I and f (x) is a concave (strictly concave)
function in I .

Graphically:
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• Examples:
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Convex Linear Combinations of Vectors

Consider the vectors x =

[
5
1

]
and y =

[
2
4

]
. For t ∈ [0, 1] draw

the linear combinations of the vectors α ∗ x + (1− α) ∗ y .

Let's represent graphically the position of the linear combination of
the given vectors, t ∗ x + (1− t) ∗ y , for t = 1, t = 0 and t = 0.5.

• Let t = 1; then

t ∗ x + (1− t) ∗ y = 1 ∗ x + (1− 1) ∗ y = x =

[
5
1

]
.

Graphically:
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Convex Linear Combinations of Vectors

• Let t = 0; then

t ∗ x + (1− t) ∗ y = 0 ∗ x + (1− 0) ∗ y = y =

[
2
4

]
.

Graphically:
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Convex Linear Combinations of Vectors

• Let t = 0.5; then t ∗ x + (1− t) ∗ y =

0.5 ∗ x + (1− 0.5) ∗ y = 0.5 ∗
[
5
1

]
+ 0.5 ∗

[
2
4

]
=

[
3.5
2.5

]
.

Graphically:
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Convex Linear Combinations of Vectors

All the possible linear combinations of the given vectors x and y for
t ∈ [0, 1] will �ll in the entire dashed line (convince yourself that
this is really the case: try t = −2, −1, 0.2, 0.6, 1, 2). Graphically
all the linear combinations of any two vectors for t ∈ [0, 1]
represent a line segment connecting the endpoints of these vectors:
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More on Convex and Concave Functions

More general de�nitions of concave and convex functions:
• A function f (x) is called concave if any line segment
connecting any two dots on the graph is either below or on
the graph.

• Mathematically:
if f : R→ R and f (tx1 + (1− t)x2) ≥ tf (x1) + (1− t)f (x2)
holds for any t ∈ [0, 1] in an interval I then f (x) is concave in
I .

• Graphically:
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More on Convex and Concave Functions

• A function f (x) is called convex if any line segment
connecting any two dots on the graph is either above or on
the graph.

• Mathematically:
if f : R→ R and f (tx1 + (1− t)x2) ≤ tf (x1) + (1− t)f (x2)
holds for any t ∈ [0, 1] in an interval I then f (x) is convex in
I .

• Graphically:
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Quasi-Concave and Quasi-Convex Functions

• An object is said to be convex if for every pair of points
within the object, every point on the straight line segment that
connects the points is also within the object.

• Illustration of a convex set:

• Illustration of a non-convex set:
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Quasi-Concave and Quasi-Convex Functions

• A function f : R→ R is quasi-concave if its upper-contour
set {y ∈ R : f (y) ≥ f (x)} is convex.

• Equivalently: a function f : R→ R is quasi-concave if
f (tx + (1− t)y) ≥ min{f (x), f (y)}.

• Examples:
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Critical Points. Necessary First-Order Conditions.

• De�nition: a critical point of a function f (x) is the number
c in its domain where either f ′(c) = 0 or f ′(c) doesn't exist.

• Suppose that a function f (x) is di�erentiable in an interval I
and that c is an interior point in I . A necessary condition for
x = c to be a maximum or minimum (extremum) point of
f (x) is f ′(c) = 0.

Graphically:
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First Derivative Test For Local Extrema Points

Suppose c is a stationary point of f (x).

• If f ′(x) ≥ 0 throughout some interval (a, c) to the left of c
and f ′(x) ≤ 0 throughout some interval (c, b) to the right of
c , then x = c is a local maximum point of f .

• If f ′(x) ≤ 0 throughout some interval (a, c) to the left of c
and f ′(x) ≥ 0 throughout some interval (c , b) to the right of
c , then x = c is a local minimum point of f .

• If f ′(x) < 0 (or f ′(x) > 0) both throughout some interval
(a, b) to the left of c and hroughout some interval (c , b) to
the right of c , then x = c is not a local extreme point.
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Second-Derivative Test For Local Extrema Points

Let f (x) be a twice di�erentiable function in an interval I and
c ∈ I , then:

• f ′(c) = 0 and f ′′(c) < 0⇒ c is a strict local maximum point.

• f ′(c) = 0 and f ′′(c) > 0⇒ c is a strict local minimum point.

• f ′(c) = 0 and f ′′(c) = 0⇒ nothing can be said about the
nature of the point (see examples below).
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Global Maximum/Minimum of a Function

Consider a function f (x) with a domain D:
• De�nition: c ∈ D is a global maximum point of
f (x)⇔ f (x) ≤ f (c) for all x ∈ D.

• De�nition: d ∈ D is a global minimum point of
f (x)⇔ f (x) ≥ f (d) for all x ∈ D.

• If f (x) < f (c) or f (x) > f (d) for all x ∈ D we say that c and
d are strict global maximum/minimum respectively.

Graphically:

The point c is a global maximum point for f (x) and a global
minimum point for −f (x).
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Global Maximum/Minimum of a Function

To �nd a global (absolute) maximum/minimum value of f (x) on a
closed interval [a, b]:

1 Evaluate f (x) at the critical points in (a, b).

2 Evaluate f (x) at a and b.

3 Global maximum is the maximum of steps 1) and 2).
Global minimum is the minimum of steps 1) and 2).
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Constrained Optimization: Equality Constraints

Let f (x , y) and g(x , y) be twice di�erentiable functions.
Consider the following constrained optimization problem:max

x ,y
f (x , y)

s.t. g(x , y) = c

In order to solve this optimization problem with an equality
constraint, we will use the Augmented Lagrangian method:

1 Construct the Lagrangian:

L(x , y , λ) = f (x , y) + λ · [c − g(x , y)]

20 / 28
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Constrained Optimization: Equality Constraints

2 Take the partial derivatives of L(x , y , λ) with respect to all the
independent variables:

∂L(x∗, y∗, λ∗)
∂x

=
∂f

∂x
(x∗, y∗)− λ∗ · ∂g

∂x
(x∗, y∗) = 0

∂L(x∗, y∗, λ∗)
∂y

=
∂f

∂y
(x∗, y∗)− λ∗ · ∂g

∂y
(x∗, y∗) = 0

∂L(x∗, y∗, λ∗)
∂λ

= c − g(x∗, y∗) = 0

(1)

(2)

(3)
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Constrained Optimization: Equality Constraints

3 Solve the system of the obtained equations following the
indicated steps:

• from (1) and (2):

λ∗ =
∂f
∂x (x

∗, y∗)
∂g
∂x (x

∗, y∗)
=

∂f
∂y (x

∗, y∗)
∂g
∂y (x

∗, y∗)
(4)

• from (3) and (4):

express x∗, y∗ (5)

• from (5) and (1) or (2):

express λ∗ (6)
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Constrained Optimization: Equality Constraints

Interpreting λ:

• so far having started with a constrained optimization problemmax
x ,y

f (x , y)

s.t. g(x , y) = c

and having constructed the Lagrangian

L(x , y , λ) = f (x , y) + λ · [c − g(x , y)], we obtained the
optimal values of x∗, y∗, λ∗.

• Now suppose that c is a parameter and that x∗ = x∗(c),
y∗ = y∗(c), λ∗(c); we can then introduce
F (c) := f (x∗(c), y∗(c)).

• F (c) is interpreted as a value function that determines the
maximum level of f (x∗(c), y∗(c)) for any given c .
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Constrained Optimization: Equality Constraints

• We are now interested in dF (c)
dc = ?

• Taking the total derivative of F (x), we obtain

dF (c)

dc
=
∂f (x∗(c), y∗(c))

∂x
· dx

∗(c)

dc
+
∂f (x∗(c), y∗(c))

∂y
· dy

∗(c)

dc
=

λ∗(c) · ∂g(x
∗(c), y∗(c))

∂x︸ ︷︷ ︸
from (1)

·dx
∗(c)

dc
+

λ∗(c) · ∂g(x
∗(c)), y∗(c))

∂y︸ ︷︷ ︸
from (2)

·dy
∗(c)

dc
=

= λ∗(c) ·
[
∂g(x∗(c), y∗(c))

∂x
· dx

∗(c)

dc
+
∂g(x∗(c), y∗(c))

∂y
· dy

∗(c)

dc

]
︸ ︷︷ ︸

?
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Constrained Optimization: Equality Constraints

Simplifying the expression above the ”?”:

• Substituting x∗(c), y∗(c) into the original constraint
g(x , y) = c , we obtain g(x∗(c), y∗(c)) = c .

• Di�erentiating both parts of the equation with respect to c ,
we get:

∂g(·)
∂x

· dx
∗(c)

dc
+
∂g(·)
∂y

· dy
∗(c)

dc
=

dc

dc
= 1

• Therefore, we can conclude that

dF (c)

dc
≡ df (x∗(c), y∗(c))

dc
= λ∗(c)

.

• λ∗(c), thus, shows by how much the optimal value of the
objective function changes if we change we value of the
constraint.
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Constrained Optimization: Inequality Constraints

• We will be facing one of two types of constraints:
1 Binding: g(x∗(c), y∗(c)) = c
2 Slack: g(x∗(c), y∗(c) < c

• Therefore, consider a di�erent optimization problem:max
x ,y

f (x , y)

s.t. g(x , y) ≤ c
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Constrained Optimization: Inequality Constraints

• The solution procedure is similar to the one introduced above.
However, the system of equations is supplemented with the
so-called Kuhn-Tucker conditions (9)− (11):

∂L(x∗, y∗, λ∗)
∂x

= 0

∂L(x∗, y∗, λ∗)
∂y

= 0

c − g(x∗, y∗) ≥ 0

λ∗ ≥ 0

λ∗ · [c − g(x∗, y∗)] = 0

(7)

(8)

(9)

(10)

(11)
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Constrained Optimization: Inequality Constraints

There are two possible cases:

1 If λ∗ = 0 then c − g(x∗, y∗) > 0, i.e. the constraint is slack
and we can continue with Unconstrained Optimization.

2 If λ∗ > 0 then c − g(x∗, y∗) = 0, i.e. the constraint is binding
and we should use the Lagrangian.

Kuhn-Tucker conditions act as a "switcher" between Unconstrained
and Constrained Optimization.
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