Introduction to Probability Theory

Daria Lavrentev
University of Freiburg

October 16, 2014

Main reference:
Mathematical Statistics with Applications by John E. Freund. Available in the seminar library S1/1427
(1) Basics
(2) Discreate Random Variables
(3) Continuous Random Variables
(4) Important Discrete Distributions
(5) Important Continuous Distributions
(6) Useful Properties
(7) Sample Distribution

Basics

We would often be interested in studying a phenomenon, where there is an uncertainty about the outcome. A random phenomenon is also refered to as an experiment.

- A set of all possible outcomes of an experiment is called the sample space and is denoted by Ω (or sometimes S).

One can be interested in results which are not given directly by a specific element of a sample spase.

- An event is a subset of the sumple space.

Example

Rolling a dice.
The sample space is: $\{1,2,3,4,5,6\}$.
$\{1,2\}$ represents an event that rolling a dice resulted in 1 or 2 .

Basics

We denote events by capital letters.
The probability of an event A is denoted by $\operatorname{Prob}(A)$ (or often by $P(A)$).
Some useful properties:

- $P(\Omega)=1$
- $P\left(A^{\prime}\right)=1-P(A)$
- $P(\emptyset)=0$
- Given A and B two events, such that $A \subseteq B$, it holds that $P(A) \leq P(B)$.
- $P(A) \in[0,1]$
- If A and B are mutualy exclusive events $(A \cap B=\emptyset)$, then $\operatorname{Prob}(A \cup B)=P(A)+P(B)$

Basics

The conditional probability of event A given event B is defined as:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Two events A and B are said to be independent if and only if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Random Variable

A random variable is a function that associates a unique numerical value with outcome of a random phenomenon/an experiment.
One distinguishes between two types of random variables: discrete and continuous.

- Discrete random variable is a random variable that can obtain a finite, or countable infinite number of values. Note that since the number of values is countable, we can denote them by : $x_{1}, x_{2}, \ldots, x_{n}, \ldots$
- Continuous random variable is a random variable that can obtain any value in \mathbb{R}.
Remark: the definition of the continious r.v. is often different.

Random Variable

Examples

- Rolling a dice.
- Number of mistakes on a page of a book.
- Waiting time in a queue at a service point.
- Weight of a child of a certain age.
- Stock price.

p.d.f and c.d.f

- The probability distribution function of a discrete random variable, $f(x)$ describes the probability of the variable to obtain a certain value x,

$$
f(x)=\operatorname{Prob}(X=x)
$$

- Cumulative destribution function is defined as the probability of the given variable X to obtain a value equal or smaller than x,

$$
F(x)=\operatorname{Prob}(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

p.d.f and c.d.f

Properties:

- $f(x) \geq 0$
- $\sum_{i=1}^{\infty} f\left(x_{i}\right)=1$

Example

Consieder a random variable that describes the outcome when rolling a fair dice once. The possible values are $\{1,2,3,4,5,6\}$. Since the dice is fair, there is the same probability of all the outcomes, that is

$$
f(x)= \begin{cases}\frac{1}{6} & x=1,2,3,4,5,6 \\ 0 & \text { otherwise }\end{cases}
$$

p.d.f and c.d.f

Example

The cumulative distribution finction in this case is:

$$
F(x)= \begin{cases}0 & x<1 \\ \frac{1}{6}, & x \in[1,2) \\ \frac{2}{6}, & x \in[2,3) \\ \frac{3}{6}, & x \in[3,4) \\ \frac{4}{6}, & x \in[4,5) \\ \frac{5}{6}, & x \in[5,6) \\ 1 & x \geq 6\end{cases}
$$

Expected Value

For a discrete random variable X with density function $f(x)$ the expected value is defined as:

$$
\mathbb{E}(X)=\mu_{X}=\sum_{i=1}^{\infty} x_{i} \cdot f\left(x_{i}\right)
$$

The following terms often refer to the same thing!

$$
\text { Expected Value }=\text { Mean }=\text { Expectations }=\text { Average }
$$

Example

Continuing the previous example,

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{i=1}^{\infty} x_{i} \cdot f\left(x_{i}\right)= \\
& =1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}+7 \cdot 0+\ldots \\
& =\frac{21}{6}=3.5
\end{aligned}
$$

Variation and Standard Deviation

The variance of a discrete random variable X is defined as:

$$
\operatorname{Var}(X)=\sigma_{X}^{2}=\sum_{i=1}^{\infty}\left(x_{i}-\mu_{X}\right)^{2} \cdot f\left(x_{i}\right)
$$

Standard deviation is: $\sigma_{X}=\sqrt{\operatorname{Var}(X)}$

Example

For the example discussed above we have:

$$
\begin{aligned}
& \operatorname{Var}(X)=\sum_{i=1}^{\infty}\left(x_{i}-\mu_{X}\right)^{2} \cdot f\left(x_{i}\right)= \\
& (1-3.5)^{2} \cdot \frac{1}{6}+(2-3.5)^{2} \cdot \frac{1}{6}+(3-3.5)^{2} \cdot \frac{1}{6}+(4-3.5)^{2} \cdot \frac{1}{6}+ \\
& +(5-3.5)^{2} \cdot \frac{1}{6}+(6-3.5)^{2} \cdot \frac{1}{6}+(7-3.5)^{2} \cdot 0+\ldots=\frac{17.5}{6} \\
& \Longrightarrow \sigma \approx 1.7078
\end{aligned}
$$

Moment of Order r

For a random variable X, it's moment of order r is defined as:

$$
M_{X}^{r}=\mathbb{E}\left(X^{r}\right)=\sum_{i=1}^{\infty} x_{i}^{r} \cdot f\left(x_{i}\right)
$$

sometimes one talks about the central moment, also refered to as the moment about the mean, that is:

$$
M_{X}^{r}=\mathbb{E}\left[\left(X-\mu_{X}\right)^{r}\right]=\sum_{i=1}^{\infty}\left(x_{i}-\mu_{X}\right)^{r} \cdot f\left(x_{i}\right)
$$

Example

σ_{x}^{2} is the central moment of X.

p.d.f and c.d.f

- A function $f(x)$ defined on the set of real numbers is called a probability density function of a continious random variable X if and only if

$$
\operatorname{Prob}(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

for any $a, b \in \mathbb{R}$, such that $a \leq b$.

- Cumulative destribution function is defined as the probability of the given variable X to obtain a value equal or smaller than x,

$$
F(x)=\operatorname{Prob}(X \leq x)=\int_{-\infty}^{x} f(z) d z
$$

p.d.f and c.d.f

p.d.f and c.d.f

- Note the difference to the discrete case!
- A function $f(x)$ can serve as a probability density function only if it has the following properties:
$1 f(x) \geq 0 \quad \forall x \in \mathbb{R}$,
$2 \int_{-\infty}^{\infty} f(x) d x=1$.
- $P(a \leq X \leq b)=F(b)-F(a)$
- If c.d.f. of a random variable X is differentiable, then

$$
f(x)=\frac{d F(x)}{d x}
$$

p.d.f and c.d.f

Example

A random variable X follows the exponential distribution with parameter λ if it has the folowing c.d.f. and p.d.f.

$$
F(x)= \begin{cases}1-e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

and

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

We denote $X \sim \exp (\lambda)$

Expected Value

- For a continuous random variable X with density function $f(x)$ the expected value is defined as:

$$
\mathbb{E}(X)=\mu_{X}=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

- Let Y be a randon variable defined by $Y=g(X)$, where $g(*)$ is a real function of single variable. The expected value of Y is:

$$
\mathbb{E}(Y)=\mathbb{E}(g(X))=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x
$$

Variation and Standard Deviation

The variance of a continuous random variable is:

$$
\operatorname{Var}(X)=\sigma^{2}=\mathbb{E}\left(\left(X-\mu_{X}\right)^{2}\right)
$$

Note that

$$
\begin{gathered}
\operatorname{Var}(X)=\mathbb{E}\left(\left(X-\mu_{X}\right)^{2}\right)=\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} \cdot f(x) d x= \\
=\int_{-\infty}^{\infty}\left(x^{2}-2 x \mu_{X}+\mu_{X}^{2}\right) \cdot f(x) d x= \\
=\int_{-\infty}^{\infty} x^{2} \cdot f(x) d x-\int_{-\infty}^{\infty} 2 x \mu_{X} \cdot f(x) d x+\int_{-\infty}^{\infty} \mu_{X}^{2} \cdot f(x) d x= \\
=\mathbb{E}\left(X^{2}\right)-\mu_{X}^{2}
\end{gathered}
$$

Example

Consieder $X \sim \exp (\lambda)$.
$\mathbb{E}(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\frac{1}{\lambda} \int_{0}^{\infty} y e^{-y} d y=$
$=\frac{1}{\lambda}\left(-\left.y e^{-y}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-y} d y\right)=\frac{1}{\lambda}\left(0-\left.e^{-y}\right|_{0} ^{\infty}\right)=\frac{1}{\lambda}(0-0+1)=\frac{1}{\lambda}$
where a substitution of variable $y=\lambda x$ is performed first, and the resulting integral is calculated using integration by parts.

Exercise

Show that $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$

Moment of Order r

Similar to the discrete case, a moment of order r is defined as:

$$
M_{X}^{r}=\mathbb{E}\left(X^{r}\right)
$$

The moment about the mean is:

$$
M_{X}^{r}=\mathbb{E}\left[\left(X-\mu_{X}\right)^{r}\right]
$$

Example

σ_{x}^{2} is the second moment around the mean.

Important Discrete Distributions

- Bernoulli distribution

A single toss of a coin with probability p of obtaining heads. Let X be a random variable obtaining 1 if the result is heads and 0 if the result is tails.

$$
\begin{gathered}
f(x)= \begin{cases}p & x=1 \\
1-p & x=0\end{cases} \\
\mathbb{E}(X)=p, \\
\operatorname{Var}(X)=p(1-p)
\end{gathered}
$$

Important Discrete Distributions

- Binomial distribution

Represents the number of successes in a sequence of n independent yes/no experiments, each of which yields success(yes) with probability p.

$$
\begin{gathered}
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1,2, \ldots \\
\mathbb{E}(X)=n p \\
\operatorname{Var}(X)=n p(1-p)
\end{gathered}
$$

Important Continuous Distributions

- Uniform distribution
X is uniform distributed on interval (a, b) it it's density function is:

$$
\begin{gathered}
f(x)=\left\{\begin{array}{ll}
\frac{1}{b-a} & a<x<b \\
0 & \text { otherwise }
\end{array},\right. \\
\mathbb{E}(X)=\frac{a+b}{2}, \\
\operatorname{Var}(x)=\frac{(b-a)^{2}}{12}
\end{gathered}
$$

Important Continuous Distributions

- Normal distribution with mean μ and variance σ^{2}

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
$$

If $\sigma^{2}=1$ and $\mu=0$ we say that the distribution is a standard normal dositribution.

- Exponential distribution

Joint Probability and Density

- Given two discrete r.v. X and Y, the function given by

$$
f(x, y)=\operatorname{Prob}(X=x, Y=y)
$$

is called the joint probability distribution function of X and Y.

- A bivariate function $f(x, y)$ is called a joint probability density function of the continuous r.v. X and Y if and only if

$$
\operatorname{Prob}[(X, Y) \in A]=\iint_{A} f(x, y) d x d y
$$

for any region A in the $x y$ plane.

Joint Distribution

- Given two discrete r.v. X and Y, the function

$$
F(x, y)=\operatorname{Prob}(X \leq x, Y \leq y)=\sum_{s \leq x} \sum_{t \leq y} f(s, t)
$$

where $(x, y) \in \mathbb{R}^{2}$ and $f(s, t)$ is the joint probability density, is the joint distribution function, or the joint cumulative distribution, of X and Y.

- Given two continuous r.v. X and Y, the function

$$
F(x, y)=\operatorname{Prob}(X \leq x, Y \leq y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d s d t
$$

where $(x, y) \in \mathbb{R}^{2}$ and $f(s, t)$ is the joint probability density, is called the joint distribution function of X and Y.

Marginal Distribution and Density.

- Given two discrete r.v. X and Y with joint probability distribution $f(x, y)$, the function

$$
g(x)=\sum_{y} f(x, y)
$$

is called the marginal distribution of X. In a similar way, $h(y)=\sum_{x} f(x, y)$ is the marginal distribution of Y.

- Given two continuous r.v. X and Y, with joint dinsity $f(x, y)$, the function

$$
g(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

is called the marginal density of X.
In a similar way, $h(y)=\int_{-\infty}^{\infty} f(x, y) d y$ is the marginal density of Y.

Independent Random Variables

Given two random variables X_{1} and X_{2} with joint distribution/density function $f\left(x_{1}, x_{2}\right)$ and distribution/density functions $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$, we say that the variables X_{1} and X_{2} are independent if and only if

$$
f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{2}\right) .
$$

If the above does not call, we say that the two random variablles are dependent or correlated.

Dependent Random Variables

- Covariance between two random variables X and Y measures how much the two random variables change together. It is defined as

$$
\mathbb{C o v}(X, Y)=\sigma_{X, Y}=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

- Correlation coefficient between two random variables X and Y, denoted by $\rho_{X, Y}$, is defined as:

$$
\rho_{X, Y}=\frac{\mathbb{C o v}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

Note that this definition applies to both discrete and continuous variables.

Useful Properties

- $\mathbb{E}[\alpha X]=\alpha \mathbb{E}[X]$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- $\mathbb{E}\left[X^{2}\right]=\operatorname{Var}[X]+\mathbb{E}^{2}[X]$
- If X and Y are independent r.v. then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- $\operatorname{Var}[\alpha X]=\alpha^{2} \operatorname{Var}[X]$
- If X and Y are independent r.v. then

$$
\operatorname{Var}[a X+b Y]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]
$$

- If X and Y are dependent r.v. then

$$
\operatorname{Var}[a X+b Y]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]+2 a b \operatorname{Cov}(X, Y)
$$

where $\alpha, a, b \in \mathbb{R}, X$ and Y are random variables.

Sample Mean, Variance and Covariance

Given a random sample $x_{1}, x_{2}, x_{3}, \ldots, x_{N}$ we can find the mean as

$$
\bar{X}=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

The sample variance is

$$
\bar{\sigma}^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)^{2}}{N}
$$

The sample covariance of two random samples $x_{1}, x_{2}, x_{3}, \ldots, x_{N}$ and $y_{1}, y_{2}, y_{3}, \ldots, y_{N}$ is

$$
\operatorname{Cov}(X, Y)=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right)}{N}
$$

Remark: for variance and covariance, sometimes N will be replaced with $N-1$.

Var-Covariance Matrix

Given N observations for each of M random varibles, which are given in a matrix form X, where each column of the matrix gives the N observations of a single variable, the variance-covariance matrix is the following matrix,

$$
\Sigma=\left(\sigma_{i j}\right)_{i, j=1 \ldots M}, \text { where } \sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

We note that this matrix is symetric and that the diagonal elements are the sample variance of the variables.

Var-Covariance Matrix

Important Example

Assuming that the variavles represented by the matrix X have a sample variance of zero, the var-covar. matrix can be calculated as

$$
\frac{1}{M} X^{\top} X
$$

Important Application

Consider an economy with two periods, today $(t=0)$ and tomorrow ($\mathrm{t}=1$). There is uncertainty about the economy state tomorrow. There are s possible states. The probabilities of each state to occur is given by $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{s}\right)$. In addition we know that the state contingent consumption of an agent in this economy is given by $\left(c_{1}, c_{2}, \ldots, c_{s}\right)$ and that the agent's utility of consuming c units is equal to $u(c)=\sqrt{c}$.
The expected utility of the agent in this economy is:

$$
E(u(c))=\sum_{i=1}^{s} \pi_{i} u\left(c_{i}\right)=\sum_{i=1}^{s} \pi_{i} \sqrt{c_{i}}
$$

