Statistics and Probability Theory
 A Short Refresher

Outline

1. Probability Distribution: Measures and Examples
 2. Estimation
 3. Inference

Sources

- Books on Statistics and Probability Theory:

In German:
\diamond Schira, J. (2016): Statistische Methoden der VWL und BWL, 5. Auflage, Pearson Studium, München
In English:
\diamond Stock, J. and Watson, M. (2015): Introduction in Econometrics, $3^{\text {rd }}$ Edition, Pearson, Boston
\diamond Wackerly, D.D., Menderhall, W., Schaeffer, R.L. (2008): Mathematical Statistics with Applications, $7^{\text {th }}$ Edition, Brooks/Cole Cengage

- Refresher as appendix of introductory econometrics textbooks:
\diamond Wooldridge, J.M. (2019) : Introductory Econometrics: A Modern Approach, $7^{\text {th }}$ Edition, South Western, Cengage Learning
\diamond Green, W.H.(2008): Econometrics Analysis, $6^{\text {th }}$ Edition, Pearson Prentice Hall
\diamond Pohlmeier, W. (2020): Econometrics I, Lecture notes, Department of Economics, University of Konstanz

1. Probability Distribution: Measures and Examples

1. Probability Distribution: Random Variable

- Random Variable (RV): a variable whose outcome is uncertain.
- E.g. the number of people infected with Corona Virus (COVID-19), the monthly salary (earning) of an individual, the crime rate of a city, the GDP of a country, the price of the Apple stock (AAPL) on NASDAQ
- Types of RV:
\diamond Discrete: the outcome is countable.
E.g. the number of people infected with a virus, the number of car accidents, outcome of throwing a dice
\diamond Continuous: the outcome is infinitely divisible, and, thus, not countable.
E.g. the monthly earning, the college grade point average (GPA), the price of a stock, the probability of getting infected with a virus

1. Probability Distribution: Definitions

- Denote by X a RV. The listing of the possible values x that X takes and the associated probabilities is denoted the probability distribution of X.
- Denote by $f_{X}(x)$ the probability distribution of X.
\rightarrow For discrete RV: $f_{X}(x)$ is denoted the probability mass function and it is defined as $f_{X}(x)=\operatorname{Prob}(X=x)$, such that

1. $0 \leq f_{X}(x) \leq 1$
2. $\sum_{x} f_{X}(x)=1$
\rightarrow For continuous RV: $f_{X}(x)$ is denoted the probability density function (pdf) and satisfies the following conditions:
3. $\operatorname{Prob}(X=x)=0$
4. $\operatorname{Prob}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x \geq 0$
5. $\int_{-\infty}^{+\infty} f_{X}(x) d x=1$
\rightarrow The pdf of X is also known as the marginal pdf of X.

Example of a discrete RV

Assume X to be a binary variable that takes two values:

- value 1 if a person infected with the Corona virus has recovered from the virus.
- value 0 if a person infected with the Corona virus has died of the virus.

$$
X= \begin{cases}1, & \text { if recovered } \\ 0, & \text { if died }\end{cases}
$$

- Let $\operatorname{Prob}(X=1)=f_{X}(1)=0.96$
- Then

$$
\begin{aligned}
& \operatorname{Prob}(X=0)=f_{X}(0)= \\
& 1-\operatorname{Prob}(X=1)=0.04
\end{aligned}
$$

- X is Bernoulli distributed with parameter $p \equiv f_{X}(1)$.

Graph of $f(x)$ for a continuous RV

$\operatorname{Prob}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$

1. Probability Distribution: Cumulative Distribution

- The cumulative distribution function (cdf), denoted by $F(x)$, gives the probability that X is less than or equal to value a :

$$
F_{X}(a)=\operatorname{Prob}(X \leq a)= \begin{cases}\sum_{x \leq a} f_{X}(x), & \text { if } X \text { is discrete } \\ \int_{-\infty}^{a} f_{X}(x) d x, & \text { if } X \text { is continuous }\end{cases}
$$

- $f_{X}(x)=\frac{\partial F_{X}(x)}{\partial x}$ for continuous RV

Properties:

- $0 \leq F_{X}(x) \leq 1$
- If $a>b, F_{X}(a) \geq F_{X}(b)$
- $F_{X}(+\infty)=1$
- $F_{X}(-\infty)=0$
- $\operatorname{Prob}(a<x \leq b)=F_{X}(b)-F_{X}(a)$

1. Probability Distribution: Mean or Expected Value

- Expected Value: measures the central tendency of the distribution of a RV.

$$
\mathrm{E}[X]=\left\{\begin{aligned}
\sum_{x} x f_{X}(x), & \text { if } X \text { is discrete } \\
\int_{-\infty}^{+\infty} x f_{X}(x) d x, & \text { if } X \text { is continuous }
\end{aligned}\right.
$$

- In the example of the discrete bivariate variable X describing an infected with Corona Virus being dead or recovered:
$E[X]=1 \cdot \operatorname{Prob}(X=1)+0 \cdot \operatorname{Prob}(X=0)=1 \cdot 0.96+0 \cdot 0.04=0.96$
Properties:
- If c is a constant, then $\mathrm{E}[c]=c$
- If a and b are constants, then $\mathrm{E}[a X+b]=a \mathrm{E}[X]+b$
- If X and Y are two RVs, then $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

1. Probability Distribution: Variance

- Variance: measures the dispersion of the distribution of a RV.

$$
\mathrm{V}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\left\{\begin{array}{cl}
\sum_{x}(x-\mathrm{E}[X])^{2} f_{X}(x), & \text { if } X \text { is discrete } \\
\int_{-\infty}^{+\infty}(x-\mathrm{E}[X])^{2} f_{X}(x) d(x), & \text { if } X \text { is continuous }
\end{array}\right.
$$

- E.g., The variance of the binary variable X from above is equal to:
$V[X]=(1-0.96)^{2} \cdot 0.96+(0-0.96)^{2} \cdot 0.04=0.0348$
Properties:
- If c is a constant, then $\mathrm{V}[c]=0$
- If X is RV, then $\mathrm{V}[X]>0$
- $\mathrm{V}[X]=\mathrm{E}\left[X^{2}\right]-\mathrm{E}[X]^{2}$
- If a is a constant, then $\mathrm{V}[a X]=a^{2} \mathrm{~V}[X]$
- If X and Y are RVs, then $\mathrm{V}[X+Y]=\mathrm{V}[X]+\mathrm{V}[Y]+2 \operatorname{Cov}[X, Y]$
- $\operatorname{Cov}[X, Y]=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]$
- The standard deviation of $X: \operatorname{sd}[X]=\sqrt{\mathrm{V}(X)}$
- $\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}[X, Y]}{\operatorname{sd}[X] \operatorname{sd}[Y]}$

1. Probability Distribution: Skewness and Kurtosis

- Skewness: measures the degree of symmetry of a distribution around its mean.

$$
S(X)=\frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{3}\right]}{\operatorname{sd}[X]^{3}}
$$

\diamond If the distribution of X is symmetric, $S(X)=0$
\diamond If the distribution of X is skewed, $S(X) \neq 0$
\diamond If $S(X)>0$, then the distribution is shifted to the left (tail on the right side): right-skewed
\diamond If $S(X)<0$, then the distribution is shifted to the right (tail on the left side): left-skewed

- Kurtosis: measures the shape a distribution; i.e. how fat (long, heavy) the tails of the distribution are.

$$
K(X)=\frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{4}\right]}{\operatorname{sd}[X]^{4}}
$$

\diamond If $K(X)>3$, the distribution of X has fat tails.

1. Probability Distribution: Normal or Gaussian distribution

Consider a RV X to be normally distribution with $\mathrm{E}[X]=\mu$ and $\mathrm{V}[X]=\sigma^{2}$, then

$$
\begin{equation*}
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{1}
\end{equation*}
$$

Properties:

- $S(X)=0$
- If $\mu=0$ and $\sigma=1$, then X is standard normally distributed: $S(X)=0, K(X)=3$
- It is "stable" under summation:
- If a and b are constants, then $a X+b$ has also a normal distribution with $\mathrm{E}[a X+b]=a \mu+b$ and $\mathrm{V}[a X+b]=a^{2} \sigma^{2} ;$
- If X and Y are normally distributed, then
$X+Y$ is also normally distributed with

$\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$ and
$\mathrm{V}[X+Y]=\mathrm{V}[X]+\mathrm{V}[Y]+2 \operatorname{Cov}[X, Y]$

1. Probability Distribution: Student's t Distribution

If X is a Student's t distributed RV with v degrees of freedom $(v>0)$, then:

$$
f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v \pi} \Gamma\left(\frac{v}{2}\right)}\left(1+\frac{x^{2}}{v}\right)^{-\frac{v+1}{2}}, \text { where } \Gamma(\cdot) \text { is the gamma function }
$$

Properties:

- $\mathrm{E}[X]=0$ if $v>1$
- $\mathrm{V}[X]=\frac{v}{v-2}$ if $v>2$
- $S[X]=0$ if $v>3$
- $K[X]=\frac{6}{v-4}+3>3$ if $v>4$
- It is not "stable" under summation:
- If a and b are constants, then $a X+b$ has a non-standardized Student's t distribution with
 another $p d f$ than above
- If X and Y are Student's t distributed, then $X+Y$ is usually not Student's distributed.

1. Probability Distribution: Joint Distribution

- Joint Distribution: describes the occurrence of events involving more than one RV.
E.g. It gives the joint probability that an individual is 22 years old (age is given by the variable X) and earns monthly 2200 Euros (salary is given by the variable Y)
- The joint distribution function is formally denoted by $f_{X Y}(x, y)$.
- If X and Y are discrete: $f_{X Y}(x, y)=\operatorname{Prob}(X=x, Y=y)$
- If X and Y are continuous: $\operatorname{Prob}(a \leq X \leq b, c \leq Y \leq d)=\int_{a}^{b} \int_{c}^{d} f_{X Y}(x, y) d y d x$
- X and Y are independent if and only if: $f_{X Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$, where $f_{X}(x)$ is the marginal $p d f$ of X and $f_{Y}(y)$ is the marginal $p d f$ of Y.
- If X and Y are two independent RVs, then X and Y are uncorrelated, i.e. $\operatorname{Cov}[X, Y]=\operatorname{Corr}[X, Y]=0$
- If X and Y are two uncorrelated RVs, then they are not necessarily independent.
- Only exception: If X and Y are normally distributed and uncorrelated, then they are also independent.

1. Probability Distribution: Conditional Distribution

- Conditional Distribution: describes the occurrence of an event involving a RV X given the occurrence of another event involving another RV, Y.
E.g. It gives the probability of earning monthly 2200 Euros (salary described by the variable Y) given that one is 22 years old (age described by the variable X).
- The conditional distribution of Y given X is formally denoted by $f_{Y \mid X}(y \mid x)$.
- $f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}$, where $f_{X}(x)$ is the (marginal) pdf of X.
- If X and Y are independent: $f_{Y \mid X}(y \mid x)=f_{Y}(y)$ I.e. the occurrence of an event for X plays no role for the occurrence of an event for Y.

1. Probability Distribution: Conditional Mean

- The conditional mean of Y given X :

$$
\mathrm{E}[Y \mid X]=\left\{\begin{aligned}
\sum_{y} y f_{Y \mid X}(y \mid x), & \text { if } Y \text { is discrete } \\
\int_{-\infty}^{+\infty} y f_{Y \mid X}(y \mid x) d y, & \text { if } Y \text { is continuous }
\end{aligned}\right.
$$

Properties:

1. $\mathrm{E}[Y \mid X]$ is a function of $\mathrm{X}: \mathrm{E}[Y \mid X]=h(X)$
2. $\mathrm{E}[g(X) \mid X]=g(X)$
3. If X and Y are independent, $\mathrm{E}[Y \mid X]=\mathrm{E}[Y]$
4. The Law of Iterated Expectations:
$\mathrm{E}[Y]=E_{X}[\mathrm{E}[Y \mid X]]$, where $E_{X}[\cdot]$ indicates the expectation over the values of X .

2. Estimation

2. Estimation: An Example

- Assume a sample of 5 individuals and 2 RVs that take the values in the table below:

Person	Age (x)	Monthly gross earning in EUR (y)
1	20	1900
2	21	2000
3	20	1700
4	25	2100
5	22	2200

- The mean of age $E[X]$ is estimated by the average of x 's in the table:
$\bar{x}=\frac{\sum_{i=1}^{5} x_{i}}{5}=\frac{20+21+20+25+22}{5}=21.6$
- The mean of earnings $E[Y]$ is estimated by the average of y 's in the table: $\bar{y}=1980$
- The variance of earnings $V[Y]$ is consistently estimated by the sample variance given the values y in the table:

$$
s^{2}=\frac{1}{5-1} \sum_{i=1}^{5}\left(y_{i}-\overline{\mathrm{y}}\right)^{2}=\frac{1}{4} \cdot\left[(1900-1980)^{2}+\cdots+(2200-1980)^{2}\right]=37000
$$

2. Estimation: An Example

Person	Age (x)	Monthly gross earning in EUR (y)
1	20	1900
2	21	2000
3	20	1700
4	25	2100
5	22	2200

- The conditional mean of earnings given that the age is 20 $E[Y \mid X=20]$ is estimated by the average of y 's in the Table for the persons 1 and 3: $\bar{y}_{\mid(X=20)}=\frac{1900+1700}{2}=1800$

2. Estimation: Estimator vs. Estimate

- Let θ be a parameter describing the distribution of X ; E.g., $\mu=E[X], \sigma^{2}=V[X]$.
- To estimate θ from a random sample of n observations drawn from the population, i.e., $x=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$, define an estimator for θ.
- An estimator for θ, denoted $\hat{\theta}$, is a known function of $\mathrm{x}: \hat{\theta}=T_{\theta}(x)$. E.g., We are looking for an estimator of the mean: $\mu=\mathrm{E}[X]$:
\diamond The average (sample mean) of the observed sample $x_{1}, \ldots x_{n}$ I.e. $\hat{\mu}=\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$ or
\diamond an alternative estimator $\tilde{\mu}=\frac{\sum_{i=1}^{n} x_{i}}{n-1}$
Which of the two estimators, $\hat{\mu}$ vs $\tilde{\mu}$, is better to estimate μ ?
- An estimator is a RV.
- The realization (the value) of an estimator computed at the values x_{1}, \ldots, x_{n} is denoted the estimate.

2. Estimation: Criteria to Judge Estimators

- Based on their:
\diamond Statistical Properties:

1. unbiasedness
2. efficiency
3. mean squared error
4. consistency, ...
\diamond Robustness to outliers
\diamond Computational burden

2. Estimation: Bias, Efficiency, Mean Squared Error

1.) An estimator $\hat{\theta}=T_{\theta}\left(x_{1}, \ldots x_{n}\right)$ of θ is unbiased if and only if, for any n (or sample),

$$
\mathrm{E}[\hat{\theta}]=\mathrm{E}\left[T_{\theta}\left(x_{1}, \ldots x_{n}\right)\right]=\theta
$$

E.g.
\diamond The empirical average is an unbiased estimator of the mean of a RV. $E[\hat{\mu}]=\mu$, however $E[\tilde{\mu}] \neq \mu$, where $\hat{\mu}$ and $\tilde{\mu}$ are defined on slide 21.
\diamond Let $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ and $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ be two estimators of the variance of $X, \sigma^{2}=V[X]$. Then $E\left[s^{2}\right]=\sigma^{2}$, but $E\left[\hat{\sigma}^{2}\right] \neq \sigma^{2}$.
The bias is defined as: $B(\hat{\theta} \mid \theta)=\mathrm{E}[\hat{\theta}-\theta]=\mathrm{E}[\hat{\theta}]-\theta$
2.) Efficiency: Let $\hat{\theta}$ and $\tilde{\theta}$ be two unbiased estimators of θ; I.e.,
$\mathrm{E}[\hat{\theta}]=\mathrm{E}[\tilde{\theta}]=\theta$.
$\hat{\theta}$ is more efficient than $\tilde{\theta}$ if $\mathrm{V}[\hat{\theta}]<\mathrm{V}[\tilde{\theta}]$.
3.) Mean Squared Error: gives the trade-off between bias and variance. $\operatorname{MSE}[\hat{\theta} \mid \theta]=\mathrm{E}\left[(\hat{\theta}-\theta)^{2}\right]=B(\hat{\theta} \mid \theta)^{2}+\mathrm{V}[\hat{\theta}]$

2. Estimation: How to get an Estimator?

- A special case: the location parameter model (LPM):

$$
\begin{equation*}
Y_{i}=\mu+\varepsilon_{i}, \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

with $\quad \varepsilon_{i} \quad$ i.i.d, $\quad E\left[\varepsilon_{i}\right]=0 \quad$ and $\quad V\left[\varepsilon_{i}\right]=1 \quad \forall i$
$\diamond L P M$ is a regression equation, consisting of:

1. the observable variable, Y_{i}
2. the unobservable error term, ε_{i}
3. the unknown parameter that need to be estimated from the sample
$y_{1}, \ldots ., y_{n}$, namely μ
\diamond E.g., if Y_{i} gives the score from an IQ test for a person i, then $\mu=E\left[Y_{i}\right]$ in Equation (2) is the expected value of the score.

2. Estimation: Least Squares (LS)

- Assume $\tilde{\mu}$ to be a generic estimator of μ.
- Define $\tilde{e}_{i}=y_{i}-\tilde{\mu}$ to be the estimated error or the residual of the regression in Equation (2).
- The LS estimator of μ, denoted by $\hat{\mu}$, is the $\tilde{\mu}$ that minimizes the sum of squared residuals: $S=\sum_{i=1}^{n} \tilde{e}_{i}^{2}$, I.e. $\hat{\mu}=\underset{\tilde{\mu}}{\operatorname{argmin}} S$
- To compute $\hat{\mu}$, we solve the first order condition:

$$
\begin{equation*}
\frac{\partial S}{\partial \tilde{\mu}}=-2 \sum_{i=1}^{n}\left(y_{i}-\tilde{\mu}\right) \stackrel{!}{=} 0 \tag{3}
\end{equation*}
$$

- From Equation (3), we get that the LS estimator of $\mu: \hat{\mu}=\bar{y}$
- The LS estimator $\hat{\mu}$ is unbiased: $E[\hat{\mu}]=\mu$
- The variance of the LS estimator $\hat{\mu}$ is equal to:

$$
V[\hat{\mu}]=V[\bar{y}]=1 / n \Rightarrow s d[\bar{y}]=\sqrt{1 / n}
$$

2. Estimation: Point Estimation

- So far we talked about point estimation: the realisation of an estimator $\hat{\theta}$ based on a random sample $x_{1} ; \ldots, x_{n}$.
- The distribution of the estimator $\hat{\theta}$, which is a RV per se, is usually a continuous one.
- Thus, the probability that it may become equal to the true value θ is equal to zero: $\operatorname{Prob}(\hat{\theta}=\theta)=0$
- We hope, however, that in expectation $\hat{\theta}$ is equal to θ (I.e., $\hat{\theta}$ is unbiased): $\mathrm{E}[\hat{\theta}]=\theta$

2. Estimation: Confidence Interval

- Therefore it is reasonable to find the range of plausible values that $\hat{\theta}$ may take such that the true value θ is within this range in a specified proportion of the sample (i.e. with a certain confidence level)
- This range is known as the confidence interval and it has a lower $\left(c_{1}\right)$ and a upper $\left(c_{2}\right)$ value.
- If the confidence level is $1-\alpha$, then c_{1} and c_{2} are chosen s.t. $\operatorname{Prob}\left(\theta \in\left[c_{1}, c_{2}\right]\right)=1-\alpha$.
- c_{1} and c_{2} can easily be derived based on the distribution of $\hat{\theta}$.
E.g., Assume $\hat{\theta}$ is standard normally distributed, $N(0,1)$. For a given value of α, c_{1} and c_{2} can be obtained from textbook tables with the critical values of the standard normal distribution; I.e. if $\alpha=0.05 \Rightarrow c_{1}=-1.645$ and $c_{2}=1.645$
Thus, the 95% confidence interval of $\hat{\theta}$ is given by $[-1.645,1.645]$.

3. Inference

3. Inference: Testing

- Test: A decision problem with respect to (w.r.t.) an unknown parameter or w.r.t. a relation between different unknown parameters. E.g. The mean μ is:
(A) different, (B) larger or
(C) smaller than a certain value μ_{0}.
- In order to undergo a test, one has to decide what is the null $\left(H_{0}\right)$ and what is the alternative $\left(H_{A}\right)$ hypothesis
- H_{0} is assumed to be true until the data suggest otherwise (like the innocence of a defendant of a jury trial).
- H_{A} is associated with the theory one would like to prove.
(A) Two-sided test
(B) One-sided test
(C) One-sided test
$H_{0}: \mu=\mu_{0}$
$H_{0}: \mu \leq \mu_{0}$
$H_{0}: \mu \geq \mu_{0}$
$H_{A}: \mu \neq \mu_{0}$
$H_{A}: \mu>\mu_{0}$
$H_{A}: \mu<\mu_{0}$

3. Inference: Testing

- In order to be able to take a decision about H_{0}, one needs to choose a test statistic.
- A test statistic is a known function of the random sample of observations at hand and it is a RV per se.
- A test statistics is chosen s.t. its distribution is known under H_{0}.
- Its distribution under H_{A} is different from the one under H_{0} and it is usually not known to the econometrician.

3. Inference: Testing

- Back to the LPM model:

$$
\begin{equation*}
Y_{i}=\mu+\varepsilon_{i}, \quad i=1, \ldots, n \tag{4}
\end{equation*}
$$

with $\mathrm{E}\left[\varepsilon_{i}\right]=0$ and $\mathrm{V}\left[\varepsilon_{i}\right]=1 \quad \forall i$

- Assume that $\varepsilon_{i} \stackrel{i . i . d}{\sim} N(0,1)$. Thus, $Y_{i} \stackrel{i . i . d}{\sim} N(\mu, 1)$
- The test statistic for (A) $H_{0}: \mu=\mu_{0}$, (B) $H_{0}: \mu \leq \mu_{0}$ and (C) $H_{0}: \mu \geq \mu_{0}$ is given by:

$$
\begin{equation*}
T=\frac{\hat{\mu}-\mu_{0}}{\sqrt{\mathrm{~V}(\hat{\mu})}}=\frac{\bar{Y}-\mu_{0}}{s d[\bar{Y}]} \sim t_{(n-1)} \tag{5}
\end{equation*}
$$

where t_{n-1} is Student's t distributed with $n-1$ degrees of freedom.

- The t-statistic T from Equation (5) measures the distance from \bar{Y} to μ_{0} relative to the standard deviation of $\bar{Y}, s d[\bar{Y}]$.
- Let t be the estimate of T computed from the sample y_{1}, \ldots, y_{n}.

3. Inference: Significance Level \& Critical Values

- Choose a significance level (decision rule of the test), denoted α.
- The significance level is the probability of rejecting H_{0} even though H_{0} is true; I.e., it is the probability of committing a Type I error:

$$
\operatorname{Prob}\left(\text { reject } H_{0} \mid H_{0}\right)=\operatorname{Prob}(\text { Type I error })=\alpha
$$

- Usually α is chosen to be small: $1 \%, 5 \%, 10 \%$.
- Based on the choice of the α, find the critical value c, corresponding to the α based on the distribution of the test statistic T under H_{0}.
(A) Two-sided test
$H_{0}: \mu=\mu_{0}$
(B) One-sided test
$H_{0}: \mu \leq \mu_{0}$
(C) One-sided test
$H_{0}: \mu \geq \mu_{0}$
$\operatorname{Prob}\left(|T|>c \mid H_{0}\right)=\alpha \quad \operatorname{Prob}\left(T>c \mid H_{0}\right)=\alpha \quad \operatorname{Prob}\left(T<-c \mid H_{0}\right)=\alpha$

3. Inference: Significance Level \& Critical Values

Take the decision of rejecting or not rejecting H_{0} at the level α by comparing t to c.
(A) Two-sided test
$H_{0}: \mu=\mu_{0}$

- if $|t| \leq c \Rightarrow$ do not reject H_{0} at α
\bullet if $|t|>c \Rightarrow$ reject H_{0} at α
(B) One-sided test
$H_{0}: \mu \leq \mu_{0}$
- if $t \leq c \Rightarrow$ do not reject H_{0} at α
- if $t>c \Rightarrow$ reject H_{0} at α
(C) One-sided test

$$
H_{0}: \mu \geq \mu_{0}
$$

- if $t \geq-c \Rightarrow$ do not reject H_{0} at α
- if $t<-c \Rightarrow$ reject H_{0} at α

In the following graphs, let $\alpha=0.05$.

3. Inference: P-Value

- Based on the choice of the significance level α, one provides only limited results for the testing (up to the choice of α).
- One can provide the complete set of results for testing by reporting the p-value.
- p-value: is the smallest significance level at which H_{0} can be rejected or the largest significance level at which H_{0} can not be rejected.
(A) Two-sided test

$$
H_{0}: \mu=\mu_{0}
$$

(C) One-sided test

$$
H_{0}: \mu \geq \mu_{0}
$$

p -value $=\operatorname{Prob}\left(|T|>t \mid H_{0}\right)$
p-value $=\operatorname{Prob}\left(T>t \mid H_{0}\right)$

${ }^{-t}$ - If p-value ${ }^{\circ} \leq \alpha$, then reject H_{0} at α; I.e. if ${ }^{t} \mathrm{p}$-value $=0$, then ${ }^{\text {t }}$ reject ${ }^{0} H_{\underline{\underline{1}}} \forall \alpha$.

3. Inference: Sum-Up the Testing Steps

Step 1 Set up the H_{0} and H_{A}.
Step 2 Compute the test statistic T.
tep 3 Find the distribution of T under the condition of H_{0}.
Step 4 Decide on the significance level α.
tep 5 (Usually) read the critical value c for the distribution at 3 for the level α from textbook tables.
Step 6 Compare the estimate of T, namely t to c.
tep 7 Take a decision about H_{0} at the level α.

3. Inference: Testing Based on Confidence Interval

- As already stated above, the test-statistic T for the mean μ in LPM, has the distribution:

$$
T=\frac{\hat{\mu}-\mu_{0}}{\sqrt{1 / n}} \sim t_{(n-1)}
$$

- Choose the confidence level $1-\alpha$.
- Then the $(1-\alpha)$ confidence interval of T is equal to

$$
\left[T-t_{\left(n-1,1-\frac{\alpha}{2}\right)}^{*}, T+t_{\left(n-1,1-\frac{\alpha}{2}\right)}^{*}\right]
$$

where $t_{\left(n-1,1-\frac{\alpha}{2}\right)}^{*}$ is the critical value corresponding to the Student's t distribution with $n-1$ degree of freedom computed at the level of $1-\frac{\alpha}{2}$. This critical value can be obtained from the textbook tables with the critical values for the Student's t distribution.

- Thus, the $(1-\alpha)$ confidence interval of μ is equal to:

$$
\begin{equation*}
\left[\bar{y}-t_{\left(n-1,1-\frac{\alpha}{2}\right)}^{*} 1 / \sqrt{n}, \bar{y}+t_{\left(n-1,1-\frac{\alpha}{2}\right)}^{*} 1 / \sqrt{n}\right] \tag{6}
\end{equation*}
$$

- The null hypotheses $H_{0}: \mu=\mu_{0}$ is rejected at the significance level α if μ_{0} is not in the confidence interval given in Equation (6).

