# Introduction to Set Theory 

Daria Lavrentev<br>Math Preparation Course

October 7, 2014

## Contact

## daria.lavrentev@mail.finance.uni-freiburg.de

## Outline

(1) Notation
(2) Ways to define a set
(3) Important Sets of Numbers
(4) Subsets and Operations

## Notation

- " $\in$ " - is an element of / belongs to set
- " $\neq$ " - is not an element of / does notbelong to
- " $\exists$ " - there exists/ there is
- " $\forall$ " - for all/ for every
- " V"- or
- " $\wedge$ "- and
- Sets are usually denoted by capital letters $(A, B, S)$.
- The elements of a set are denoted by small letters and listed in curly brackets ( $\{\ldots\}$ )


## Notation

## Examples:

- $a \in A$
- $d \notin A$
- $\exists x: x \in A \wedge x \in B$
- $\forall c \in C \quad c=2 \cdot n, n=1,2,3, \ldots$


## Different ways to define a set

1. Explicitely list the elements:

## Example

- $A=\{1,2,6,125\}$
- $\mathbb{N}=\{1,2,3,4,5,6,7, \ldots\}$
- $D=\{a, b, c\}$

Note:

- The order of the elements is not important:

$$
\{2,1\}=\{1,2\}
$$

- Repitition of elements is irrelevant:

$$
\{1,1,1,1,1\}=\{1\}
$$

## Different ways to define a set

2. Define a set using verbal description:

## Examples

- $B$ is the set of all even numbers between 4 and 25
- $\mathbb{R}$ is the set of all real numbers

3. Define a set using a mathematical rule/condition:

Examples

- $K=\{x \in \mathbb{Z} \mid-2<x<5\}$
- $A=\{x \in \mathbb{N} \mid x=3 \cdot n-1, n \in \mathbb{N}\}$


## Important Sets of numbers

- The Integer numbers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- The Natural numbers:

$$
\mathbb{N}=\{0,1,2,3,4,5,6,7, \ldots\}
$$

or sometimes

$$
\mathbb{N}=\{1,2,3,4,5,6,7, \ldots\}
$$

Remark: . There is no general agreement about whether to include 0 in the set of natural numbers

- The Real numbers :

$$
\mathbb{R}=(-\infty,+\infty)
$$

## Important Sets of numbers

- The $\mathbf{n}$-dimentional real space :

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}, i=1,2, \ldots, n\right\}
$$

- The Empty Set

$$
\emptyset=\{ \}
$$

is the set that has no elements.

- The Rational numbers :

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\}
$$

## Important Sets of numbers

- All the real numbers which are not rational are called Irrational numbers.
- Intervals

$$
\begin{aligned}
& (a, b)=\{x \in \mathbb{R}: a<x<b\} \\
& {[a, b]=\{x \in \mathbb{R}: a \leqslant x \leqslant b\}} \\
& {[a, b)=\{x \in \mathbb{R}: a \leqslant x<b\}} \\
& (a, b]=\{x \in \mathbb{R}: a<x \leqslant b\}
\end{aligned}
$$

## Subsets

## Subset:

Given two sets $A$ and $B$, we say that $A$ is a subset of $B$ if every element of $A$ is also an element of set $B$.

$$
A \subset B \Leftrightarrow x \in A \Rightarrow x \in B
$$

- $B$ is called a superset of $A$
- One can also say tha $A$ is contained in $B$
- Any set is a subset of itself, i.e. $A \subset A$
- If $A \subset B$ but is not equal to $B$, it is called a proper subset $A \subsetneq B$.


## Operations on Sets

1 Union of sets $A \cup B$

$$
A \cup B=\{x \mid x \in A \vee x \in B\}
$$

Example:

$$
\begin{gathered}
A=\{a, b, c, e\} \\
B=\{b, d\}
\end{gathered} \Rightarrow A \cup B=\{a, b, c, d, e\}
$$

2 Intersection of sets $A \cap B$

$$
A \cap B=\{x \mid x \in A \wedge x \in B\}
$$

Example:

$$
A \cap B=\{b\}
$$

Two sets $A$ and $B$ are said to be disjoint when $A \cap B=\emptyset$.

## Operations on Sets

Sometimes one is interested in an union or intersection of infinite number of sets.

## Example

For $n=1,2,3, \ldots$

$$
\begin{gathered}
I_{n}=\left[0, \frac{1}{n}\right] \\
I_{1}=[0,1], I_{2}=\left[0, \frac{1}{2}\right], I_{3}=\left[0, \frac{1}{3}\right] \cdots \\
\Rightarrow \bigcap_{n=1}^{\infty} I_{n}=\{0\}, \bigcup_{n=1}^{\infty} I_{n}=[0,1]
\end{gathered}
$$

## Operations on Sets

3 Cartesian product of sets: $A \times B$

$$
\begin{gathered}
A \times B=\{(a, b) \mid a \in A, b \in B\} \\
A \times B \times C=\{(a, b, c) \mid a \in A, b \in B, c \in C\}
\end{gathered}
$$

Example:

$$
\begin{aligned}
& A=\{1,2\} \\
& B=\{3,4\}
\end{aligned} \Rightarrow A \times B=\{(1,3),(1,4),(2,3),(2,4)\}
$$

Note: the order of the sets is important!

$$
A \times B \neq B \times A
$$

## Operations on Sets

4 Complement of a set $A^{C}$
Let $U$ be the universal set, and $A \subset U$. Than the compliment of $A$ is the set of elements in $U$ that are not in $A$, also denoted as $A^{C}$ and $A^{\prime}$.

$$
A^{C}=A^{\prime}=U / A=U-A
$$

## Example:

$$
\begin{aligned}
& A=(1,2] \\
& U=[0,2]
\end{aligned} \Rightarrow A^{C}=[0,1]
$$

## Complement Laws

- $A^{\prime} \cup A=U$
- $A^{\prime} \cap A=\emptyset$
- $U^{\prime}=\emptyset$
- $\emptyset^{\prime}=U$
- $\left(A^{\prime}\right)^{\prime}=A$
- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$


## Venn Diagram

Relationships between a small number of sets can be represented in a graphical way, refered to as the Venn diagram:


## Example:

The white region: $A \cap B \cap C$; The green region is: $B /(A \cup C)$

## Some more useful notations

Summation or product of a finite large or an infinite number of elements are denoted as follows:
Given an infinite series of numbers $a_{1}, a_{2}, a_{3}, .$. we can denote the sum and the product of those numbers by:

- Sum

$$
\sum_{i=1}^{\infty} a_{i}
$$

- Product

$$
\prod_{i=1}^{\infty} a_{i}
$$

Note: of course the number of elements does not have to be infinite. We can replace $\infty$ by the desiered number of elements. We also note that even though it is not explicitly stated, one assumes that the index is in the set of natural numbers.

