Tutorial 1

1 Set Theory

Question 1:

a. Given $U=[-5,5], \quad A=[-1,1], \quad B=[5,8], \quad C=[1,3], \quad D=(2,4)$.

Find $A^{C}, \quad D^{\prime}, \quad A \cap B, \quad B \cup U, \quad \emptyset^{C}, \quad A^{\prime} \cap D^{\prime}$.
b. Let $A=\{2,3,4\}, \quad B=\{2,5,6\}, \quad C=\{5,6,2\}$, and $D=\{6\}$ Which of the following statements are true?
a. $\quad 4 \in C$
b. $\quad 5 \in C$
c. $A \subseteq B$
d. $D \subseteq C$
e. $B=C$
f. $\quad A \cap B=\{2,3,4,5,6\}$

Question 2:

Find the cartesian product of the following sets. Give a graphical and analytical solution.
a. $A=[3,5], \quad B=[5,8)$
b. $A=\{1,2,3\}, \quad B=\{1,5\}$

Question 3:

Give an explicit list of the elements of each of the following sets:
a. $E=\{x \quad \mid \quad x \in \mathbb{N},-2<x<19\}$
b. $K=\{k \quad \mid \quad k \in \mathbb{Z}, k \notin \mathbb{N}, k<9\}$
c. $A=\{3 n+2 \quad: \quad n \in \mathbb{N}, n \leq 10\}$

2 Matrix Algebra

Question 1:

Find $A+B, \quad A-B, \quad 2 A, \quad A B, \quad B A, \quad A^{2}$ for the following matrices:

$$
A=\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right), \quad B=\left(\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right)
$$

Question 2:

Compute $A B, \quad B A, \quad A^{\top}, \quad B^{\prime}$ for:

$$
A=\left(\begin{array}{ccc}
0 & 1 & 3 \\
3 & 4 & -1 \\
4 & 2 & 6
\end{array}\right), \quad B=\left(\begin{array}{cc}
3 & 2 \\
1 & 0 \\
-1 & 1
\end{array}\right)
$$

Question 3:

What is the determinant of the following matrices?
a. $\quad\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
b. $\quad\left(\begin{array}{cc}25 & 8 \\ -12 & 4\end{array}\right)$
c. $\quad\left(\begin{array}{ccc}1 & 3 & 5 \\ 2 & 4 & 6 \\ 3 & 7 & 11\end{array}\right)$
d. $\left(\begin{array}{lll}5 & 2 & 5 \\ 3 & 7 & 8 \\ 1 & 2 & 6\end{array}\right)$

Question 4:

Find inverse of the following matrices and verify that $A^{-1} \cdot A=A \cdot A^{-1}=I$
a. $\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right)$
b. $\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$
c. $\quad\left(\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 3 \\ 3 & 2 & 1\end{array}\right)$
d. $\left(\begin{array}{lll}8 & 2 & 3 \\ 4 & 2 & 0 \\ 6 & 5 & 2\end{array}\right)$

Question 5:

Solve the following system of equations:
a. $\left\{\begin{array}{l}8 x_{1}+2 x_{2}+3 x_{3}=18 \\ 4 x_{1}+2 x_{2}=8 \\ 6 x_{1}+5 x_{2}+2 x_{3}=20\end{array}\right.$
b. $\left\{\begin{array}{l}2 x_{1}+x_{2}+x_{3}=40 \\ x_{1}+2 x_{2}+3 x_{3}=60 \\ 2 x_{1}-x_{2}+x_{3}=20\end{array}\right.$
c. $X q=p$, where $X=\left(\begin{array}{lll}2 & 1 & 4 \\ 1 & 3 & 6\end{array}\right)$ and $p=\binom{2.2}{3.5}$
d. $\left\{\begin{array}{l}2 a+b+c=40 \\ 6 a+3 b+3 c=60\end{array}\right.$

Question 6:

$u=\binom{2}{4}, \quad v=\binom{4}{2}$
a. Let $0 \leq c, d \leq 1$ and $c+d=1$. Draw $c u+d v$.
b. Let $\quad c, d \in \mathbb{R}$ and $c+d=1$. Draw $c u+d v$.
c. Let $0 \leq c, d \leq 1$. Draw $c u+d v$.
d. Let $c, d \geq 0$. Draw $c u+d v$.

